Few-Shot and Prompt Training for Text Classification in German Doctor's Letters

被引:0
|
作者
Richter-Pechanski, Phillip [1 ,2 ,3 ,4 ]
Wiesenbach, Philipp [1 ,2 ,4 ]
Schwa, Dominic M. [2 ]
Kiriakou, Christina [2 ]
He, Mingyang [1 ,2 ]
Geis, Nicolas A. [2 ,4 ]
Frank, Anette [5 ]
Dieterich, Christoph [1 ,2 ,3 ,4 ]
机构
[1] Klaus Tschira Inst Computat Cardiol, Heidelberg, Germany
[2] Univ Heidelberg Hosp, Dept Internal Med 3, Heidelberg, Germany
[3] German Ctr Cardiovasc Res DZHK, Partner Site Heidelberg Mannheim, Berlin, Germany
[4] Informat Life, Heidelberg, Germany
[5] Heidelberg Univ, Dept Computat Linguist, Heidelberg, Germany
关键词
deep learning; prompting; language models; cardiology;
D O I
10.3233/SHTI230275
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
To classify sentences in cardiovascular German doctor's letters into eleven section categories, we used pattern-exploiting training, a prompt-based method for text classification in few-shot learning scenarios (20, 50 and 100 instances per class) using language models with various pre-training approaches evaluated on CARDIO:DE, a freely available German clinical routine corpus. Prompting improves results by 5-28% accuracy compared to traditional methods, reducing manual annotation efforts and computational costs in a clinical setting.
引用
收藏
页码:819 / 820
页数:2
相关论文
共 50 条
  • [41] CLUR: Uncertainty Estimation for Few-Shot Text Classification with Contrastive Learning
    He, Jianfeng
    Zhang, Xuchao
    Lei, Shuo
    Alhamadani, Abdulaziz
    Chen, Fanglan
    Xiao, Bei
    Lu, Chang-Tien
    PROCEEDINGS OF THE 29TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, KDD 2023, 2023, : 698 - 710
  • [42] CPCL: Conceptual prototypical contrastive learning for Few-Shot text classification
    Cheng, Tao
    Cheng, Hua
    Fang, Yiquan
    Liu, Yufei
    Gao, Caiting
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2023, 45 (06) : 11963 - 11975
  • [43] Few-Shot Text Classification with Global-Local Feature Information
    Wang, Depei
    Wang, Zhuowei
    Cheng, Lianglun
    Zhang, Weiwen
    SENSORS, 2022, 22 (12)
  • [44] Multitask-Based Cluster Transmission for Few-Shot Text Classification
    Dong, Kaifang
    Xu, Fuyong
    Jiang, Baoxing
    Li, Hongye
    Liu, Peiyu
    KNOWLEDGE SCIENCE, ENGINEERING AND MANAGEMENT, PT I, KSEM 2023, 2023, 14117 : 66 - 77
  • [45] TI-Prompt: Towards a Prompt Tuning Method for Few-shot Threat Intelligence Twitter Classification
    You, Yizhe
    Jiang, Zhengwei
    Zhang, Kai
    Jiang, Jun
    Wang, Xuren
    Zhang, Zheyu
    Wang, Shirui
    Feng, Huamin
    2022 IEEE 46TH ANNUAL COMPUTERS, SOFTWARE, AND APPLICATIONS CONFERENCE (COMPSAC 2022), 2022, : 272 - 279
  • [46] Evolutionary Verbalizer Search for Prompt-Based Few Shot Text Classification
    Ling, Tongtao
    Chen, Lei
    Lai, Yutao
    Liu, Hai-Lin
    KNOWLEDGE SCIENCE, ENGINEERING AND MANAGEMENT, PT IV, KSEM 2023, 2023, 14120 : 279 - 290
  • [47] Commonsense Knowledge-Aware Prompt Tuning for Few-Shot NOTA Relation Classification
    Lv, Bo
    Jin, Li
    Zhang, Yanan
    Wang, Hao
    Li, Xiaoyu
    Guo, Zhi
    APPLIED SCIENCES-BASEL, 2022, 12 (04):
  • [48] TaxonPrompt: Taxonomy-aware curriculum prompt learning for few-shot event classification
    Song, Chengyu
    Cai, Fei
    Wang, Mengru
    Zheng, Jianming
    Shao, Taihua
    KNOWLEDGE-BASED SYSTEMS, 2023, 264
  • [49] The Devil is in the Details: On Models and Training Regimes for Few-Shot Intent Classification
    Mesgar, Mohsen
    Thy Thy Tran
    Glavas, Goran
    Gurevych, Iryna
    17TH CONFERENCE OF THE EUROPEAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, EACL 2023, 2023, : 1846 - 1857
  • [50] Few-Shot Classification with Contrastive Learning
    Yang, Zhanyuan
    Wang, Jinghua
    Zhu, Yingying
    COMPUTER VISION, ECCV 2022, PT XX, 2022, 13680 : 293 - 309