Maxima of linear processes with heavy-tailed innovations and random coefficients

被引:1
|
作者
Krizmanic, Danijel [1 ]
机构
[1] Univ Rijeka, Dept Math, Radmile Matejcic 2, Rijeka 51000, Croatia
关键词
Functional limit theorem; regular variation; extremal process; set minus special t4ht@; M-1; topology; linear process; ALPHA-STABLE DOMAIN; WEAK-CONVERGENCE; MOVING AVERAGES; FUNCTIONAL CONVERGENCE; LIMIT-THEOREMS; SUMS;
D O I
10.1111/jtsa.12610
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigate maxima of linear processes with i.i.d. heavy-tailed innovations and random coefficients. Using the point process approach we derive functional convergence of the partial maxima stochastic process in the space of non-decreasing cadlag functions on [0, 1] with the Skorokhod M-1 topology.
引用
收藏
页码:238 / 262
页数:25
相关论文
共 50 条
  • [21] EMPIRICAL PERFORMANCE OF GARCH MODELS WITH HEAVY-TAILED INNOVATIONS
    Guo, Zi-Yi
    [J]. BULLETIN OF ECONOMIC RESEARCH, 2019, 71 (03) : 359 - 387
  • [22] Asymptotic normality of the likelihood moment estimators for a stationary linear process with heavy-tailed innovations
    Lukas Martig
    Jürg Hüsler
    [J]. Extremes, 2018, 21 : 1 - 26
  • [23] Random Walk with a Heavy-Tailed Jump Distribution
    J.W. Cohen
    [J]. Queueing Systems, 2002, 40 : 35 - 73
  • [24] Spectrum of heavy-tailed elliptic random matrices
    Campbell, Andrew
    O'Rourke, Sean
    [J]. ELECTRONIC JOURNAL OF PROBABILITY, 2022, 27 : 1 - 56
  • [25] Singularity Analysis for Heavy-Tailed Random Variables
    Ercolani, Nicholas M.
    Jansen, Sabine
    Ueltschi, Daniel
    [J]. JOURNAL OF THEORETICAL PROBABILITY, 2019, 32 (01) : 1 - 46
  • [26] Heavy-tailed chiral random matrix theory
    Kanazawa, Takuya
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2016, (05): : 1 - 19
  • [27] Singularity Analysis for Heavy-Tailed Random Variables
    Nicholas M. Ercolani
    Sabine Jansen
    Daniel Ueltschi
    [J]. Journal of Theoretical Probability, 2019, 32 : 1 - 46
  • [28] On the top eigenvalue of heavy-tailed random matrices
    Biroli, G.
    Bouchaud, J.-P.
    Potters, M.
    [J]. EPL, 2007, 78 (01)
  • [29] Random walk with a heavy-tailed jump distribution
    Cohen, JW
    [J]. QUEUEING SYSTEMS, 2002, 40 (01) : 35 - 73
  • [30] ON EXPLOSIONS IN HEAVY-TAILED BRANCHING RANDOM WALKS
    Amini, Omid
    Devroye, Luc
    Griffiths, Simon
    Olver, Neil
    [J]. ANNALS OF PROBABILITY, 2013, 41 (3B): : 1864 - 1899