Singularity Analysis for Heavy-Tailed Random Variables

被引:0
|
作者
Nicholas M. Ercolani
Sabine Jansen
Daniel Ueltschi
机构
[1] The University of Arizona,Department of Mathematics
[2] Ludwigs-Maximilians Universität München,Mathematisches Institut
[3] University of Warwick,Department of Mathematics
来源
关键词
Local limit laws; Large deviations; Heavy-tailed random variables; Asymptotic analysis; Lindelöf integral; Singularity analysis; Bivariate steepest descent; 05A15; 30E20; 44A15; 60F05; 60F10;
D O I
暂无
中图分类号
学科分类号
摘要
We propose a novel complex-analytic method for sums of i.i.d. random variables that are heavy-tailed and integer-valued. The method combines singularity analysis, Lindelöf integrals, and bivariate saddle points. As an application, we prove three theorems on precise large and moderate deviations which provide a local variant of a result by Nagaev (Transactions of the sixth Prague conference on information theory, statistical decision functions, random processes, Academia, Prague, 1973). The theorems generalize five theorems by Nagaev (Litov Mat Sb 8:553–579, 1968) on stretched exponential laws p(k)=cexp(-kα)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p(k) = c\exp ( -k^\alpha )$$\end{document} and apply to logarithmic hazard functions cexp(-(logk)β)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c\exp ( - (\log k)^\beta )$$\end{document}, β>2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta >2$$\end{document}; they cover the big-jump domain as well as the small steps domain. The analytic proof is complemented by clear probabilistic heuristics. Critical sequences are determined with a non-convex variational problem.
引用
收藏
页码:1 / 46
页数:45
相关论文
共 50 条