On the top eigenvalue of heavy-tailed random matrices

被引:70
|
作者
Biroli, G. [1 ]
Bouchaud, J.-P.
Potters, M.
机构
[1] CEA Saclay, Serv Phys Theor, F-91191 Gif Sur Yvette, France
[2] CEA Saclay, Serv Phys Etat Condense, F-91191 Gif Sur Yvette, France
[3] Capital Fund Management, Sci & Finance, F-75009 Paris, France
关键词
D O I
10.1209/0295-5075/78/10001
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the statistics of the largest eigenvalue lambda(max) of N x N random matrices with IID entries of variance 1/ N, but with power law tails P(M(ij)) similar to vertical bar M(ij)vertical bar(-1-mu). When mu > 4, lambda(max) converges to 2 with Tracy-Widom fluctuations of order N(-2/3), but with large finite N corrections. When mu < 4, lambda(max) is of order N(2/mu-1/2) and is governed by Frechet statistics. The marginal case mu = 4 provides a new class of limiting distribution that we compute explicitly. We extend these results to sample covariance matrices, and show that extreme events may cause the largest eigenvalue to significantly exceed the Marcenko-Pastur edge. Copyright (c) EPLA, 2007.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Spectrum of heavy-tailed elliptic random matrices
    Campbell, Andrew
    O'Rourke, Sean
    [J]. ELECTRONIC JOURNAL OF PROBABILITY, 2022, 27 : 1 - 56
  • [2] Random polytopes obtained by matrices with heavy-tailed entries
    Guedon, O.
    Litvak, A. E.
    Tatarko, K.
    [J]. COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2020, 22 (04)
  • [3] Localization and delocalization of eigenvectors for heavy-tailed random matrices
    Charles Bordenave
    Alice Guionnet
    [J]. Probability Theory and Related Fields, 2013, 157 : 885 - 953
  • [4] Delocalization at Small Energy for Heavy-Tailed Random Matrices
    Charles Bordenave
    Alice Guionnet
    [J]. Communications in Mathematical Physics, 2017, 354 : 115 - 159
  • [5] Localization and delocalization of eigenvectors for heavy-tailed random matrices
    Bordenave, Charles
    Guionnet, Alice
    [J]. PROBABILITY THEORY AND RELATED FIELDS, 2013, 157 (3-4) : 885 - 953
  • [6] Delocalization at Small Energy for Heavy-Tailed Random Matrices
    Bordenave, Charles
    Guionnet, Alice
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2017, 354 (01) : 115 - 159
  • [7] Extreme eigenvalue statistics of m-dependent heavy-tailed matrices
    Basrak, Bojan
    Cho, Yeonok
    Heiny, Johannes
    Jung, Paul
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2021, 57 (04): : 2100 - 2127
  • [8] Restricted isometry property for random matrices with heavy-tailed columns
    Guedon, Olivier
    Litvak, Alexander E.
    Pajor, Alain
    Tomczak-Jaegermann, Nicole
    [J]. COMPTES RENDUS MATHEMATIQUE, 2014, 352 (05) : 431 - 434
  • [9] Minimum of heavy-tailed random variables is not heavy tailed
    Leipus, Remigijus
    Siaulys, Jonas
    Konstantinides, Dimitrios
    [J]. AIMS MATHEMATICS, 2023, 8 (06): : 13066 - 13072
  • [10] THE SMALLEST SINGULAR VALUE OF HEAVY-TAILED NOT NECESSARILY IID RANDOM MATRICES VIA RANDOM ROUNDING
    Livshyts, Galyna, V
    [J]. JOURNAL D ANALYSE MATHEMATIQUE, 2021, 145 (01): : 257 - 306