Localization and delocalization of eigenvectors for heavy-tailed random matrices

被引:0
|
作者
Charles Bordenave
Alice Guionnet
机构
[1] CNRS and Université de Toulouse,
[2] Institut de Mathématiques de Toulouse,undefined
[3] CNRS and École Normale Supérieure de Lyon,undefined
[4] Unité de mathématiques pures et appliquées,undefined
来源
关键词
Random matrices; Stable distribution; Eigenvector delocalization; Wegner estimate; 15B52 (60B20, 60F15, 60E07);
D O I
暂无
中图分类号
学科分类号
摘要
Consider an \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n \times n$$\end{document} Hermitian random matrix with, above the diagonal, independent entries with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}-stable symmetric distribution and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0 < \alpha < 2$$\end{document}. We establish new bounds on the rate of convergence of the empirical spectral distribution of this random matrix as \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n$$\end{document} goes to infinity. When \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1 < \alpha < 2$$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ p > 2$$\end{document}, we give vanishing bounds on the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^p$$\end{document}-norm of the eigenvectors normalized to have unit \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2$$\end{document}-norm. On the contrary, when \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0 < \alpha < 2/3$$\end{document}, we prove that these eigenvectors are localized.
引用
收藏
页码:885 / 953
页数:68
相关论文
共 50 条
  • [1] Localization and delocalization of eigenvectors for heavy-tailed random matrices
    Bordenave, Charles
    Guionnet, Alice
    [J]. PROBABILITY THEORY AND RELATED FIELDS, 2013, 157 (3-4) : 885 - 953
  • [2] Delocalization at Small Energy for Heavy-Tailed Random Matrices
    Charles Bordenave
    Alice Guionnet
    [J]. Communications in Mathematical Physics, 2017, 354 : 115 - 159
  • [3] Delocalization at Small Energy for Heavy-Tailed Random Matrices
    Bordenave, Charles
    Guionnet, Alice
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2017, 354 (01) : 115 - 159
  • [4] Localization and delocalization for heavy tailed band matrices
    Benaych-Georges, Florent
    Peche, Sandrine
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2014, 50 (04): : 1385 - 1403
  • [5] Spectrum of heavy-tailed elliptic random matrices
    Campbell, Andrew
    O'Rourke, Sean
    [J]. ELECTRONIC JOURNAL OF PROBABILITY, 2022, 27 : 1 - 56
  • [6] On the top eigenvalue of heavy-tailed random matrices
    Biroli, G.
    Bouchaud, J.-P.
    Potters, M.
    [J]. EPL, 2007, 78 (01)
  • [7] Random polytopes obtained by matrices with heavy-tailed entries
    Guedon, O.
    Litvak, A. E.
    Tatarko, K.
    [J]. COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2020, 22 (04)
  • [8] Restricted isometry property for random matrices with heavy-tailed columns
    Guedon, Olivier
    Litvak, Alexander E.
    Pajor, Alain
    Tomczak-Jaegermann, Nicole
    [J]. COMPTES RENDUS MATHEMATIQUE, 2014, 352 (05) : 431 - 434
  • [9] DELOCALIZATION OF EIGENVECTORS OF RANDOM MATRICES WITH INDEPENDENT ENTRIES
    Rudelson, Mark
    Vershynn, Roman
    [J]. DUKE MATHEMATICAL JOURNAL, 2015, 164 (13) : 2507 - 2538
  • [10] Minimum of heavy-tailed random variables is not heavy tailed
    Leipus, Remigijus
    Siaulys, Jonas
    Konstantinides, Dimitrios
    [J]. AIMS MATHEMATICS, 2023, 8 (06): : 13066 - 13072