Delocalization at Small Energy for Heavy-Tailed Random Matrices

被引:0
|
作者
Charles Bordenave
Alice Guionnet
机构
[1] CNRS and Université Toulouse III,
[2] CNRS and École Normale Supérieure de Lyon,undefined
[3] MIT,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We prove that the eigenvectors associated to small enough eigenvalues of a heavy-tailed symmetric random matrix are delocalized with probability tending to one as the size of the matrix grows to infinity. The delocalization is measured thanks to a simple criterion related to the inverse participation ratio which computes an average ratio of L4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${L^4}$$\end{document} and L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${L^2}$$\end{document}-norms of vectors. In contrast, as a consequence of a previous result, for random matrices with sufficiently heavy tails, the eigenvectors associated to large enough eigenvalues are localized according to the same criterion. The proof is based on a new analysis of the fixed point equation satisfied asymptotically by the law of a diagonal entry of the resolvent of this matrix.
引用
收藏
页码:115 / 159
页数:44
相关论文
共 50 条
  • [1] Delocalization at Small Energy for Heavy-Tailed Random Matrices
    Bordenave, Charles
    Guionnet, Alice
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2017, 354 (01) : 115 - 159
  • [2] Localization and delocalization of eigenvectors for heavy-tailed random matrices
    Bordenave, Charles
    Guionnet, Alice
    [J]. PROBABILITY THEORY AND RELATED FIELDS, 2013, 157 (3-4) : 885 - 953
  • [3] Localization and delocalization of eigenvectors for heavy-tailed random matrices
    Charles Bordenave
    Alice Guionnet
    [J]. Probability Theory and Related Fields, 2013, 157 : 885 - 953
  • [4] Spectrum of heavy-tailed elliptic random matrices
    Campbell, Andrew
    O'Rourke, Sean
    [J]. ELECTRONIC JOURNAL OF PROBABILITY, 2022, 27 : 1 - 56
  • [5] On the top eigenvalue of heavy-tailed random matrices
    Biroli, G.
    Bouchaud, J.-P.
    Potters, M.
    [J]. EPL, 2007, 78 (01)
  • [6] Random polytopes obtained by matrices with heavy-tailed entries
    Guedon, O.
    Litvak, A. E.
    Tatarko, K.
    [J]. COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2020, 22 (04)
  • [7] Restricted isometry property for random matrices with heavy-tailed columns
    Guedon, Olivier
    Litvak, Alexander E.
    Pajor, Alain
    Tomczak-Jaegermann, Nicole
    [J]. COMPTES RENDUS MATHEMATIQUE, 2014, 352 (05) : 431 - 434
  • [8] Minimum of heavy-tailed random variables is not heavy tailed
    Leipus, Remigijus
    Siaulys, Jonas
    Konstantinides, Dimitrios
    [J]. AIMS MATHEMATICS, 2023, 8 (06): : 13066 - 13072
  • [9] Localization and delocalization for heavy tailed band matrices
    Benaych-Georges, Florent
    Peche, Sandrine
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2014, 50 (04): : 1385 - 1403
  • [10] THE SMALLEST SINGULAR VALUE OF HEAVY-TAILED NOT NECESSARILY IID RANDOM MATRICES VIA RANDOM ROUNDING
    Livshyts, Galyna, V
    [J]. JOURNAL D ANALYSE MATHEMATIQUE, 2021, 145 (01): : 257 - 306