Long-term cancer survival prediction using multimodal deep learning

被引:84
|
作者
Vale-Silva, Luis A. [1 ,2 ]
Rohr, Karl [1 ,2 ]
机构
[1] Heidelberg Univ, Biomed Comp Vis Grp, BioQuant Ctr, D-69120 Heidelberg, Germany
[2] Heidelberg Univ, Inst Pharm & Mol Biotechnol IPMB, D-69120 Heidelberg, Germany
关键词
NEURAL-NETWORKS; REPRESENTATION; PROGNOSIS; MODELS;
D O I
10.1038/s41598-021-92799-4
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The age of precision medicine demands powerful computational techniques to handle high-dimensional patient data. We present MultiSurv, a multimodal deep learning method for long-term pan-cancer survival prediction. MultiSurv uses dedicated submodels to establish feature representations of clinical, imaging, and different high-dimensional omics data modalities. A data fusion layer aggregates the multimodal representations, and a prediction submodel generates conditional survival probabilities for follow-up time intervals spanning several decades. MultiSurv is the first non-linear and non-proportional survival prediction method that leverages multimodal data. In addition, MultiSurv can handle missing data, including single values and complete data modalities. MultiSurv was applied to data from 33 different cancer types and yields accurate pan-cancer patient survival curves. A quantitative comparison with previous methods showed that Multisurv achieves the best results according to different time-dependent metrics. We also generated visualizations of the learned multimodal representation of MultiSurv, which revealed insights on cancer characteristics and heterogeneity.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Long-Term Origin-Destination Demand Prediction With Graph Deep Learning
    Zou, Xiexin
    Zhang, Shiyao
    Zhang, Chenhan
    Yu, James J. Q.
    Chung, Edward
    [J]. IEEE TRANSACTIONS ON BIG DATA, 2022, 8 (06) : 1481 - 1495
  • [42] Long-term prediction of daily solar irradiance using Bayesian deep learning and climate simulation data
    Gerges, Firas
    Boufadel, Michel C.
    Bou-Zeid, Elie
    Nassif, Hani
    Wang, Jason T. L.
    [J]. KNOWLEDGE AND INFORMATION SYSTEMS, 2024, 66 (01) : 613 - 633
  • [43] Deep Ensemble Learning Model for Long-Term Travel Time Prediction on Highways
    Ho, Ming-Chu
    Chen, Yu-Cing
    Hung, Chih-Chieh
    Wu, Hsien-Chu
    [J]. 2021 IEEE FOURTH INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND KNOWLEDGE ENGINEERING (AIKE 2021), 2021, : 129 - 130
  • [44] Deep learning-based long-term prediction of air quality parameters
    Gökçek Ö.B.
    Dokuz Y.
    Bozdağ A.
    [J]. Arabian Journal of Geosciences, 2021, 14 (21)
  • [45] Predicting long-term progression of Alzheimer's disease using a multimodal deep learning model incorporating interaction effects
    Wang, Yifan
    Gao, Ruitian
    Wei, Ting
    Johnston, Luke
    Yuan, Xin
    Zhang, Yue
    Yu, Zhangsheng
    [J]. JOURNAL OF TRANSLATIONAL MEDICINE, 2024, 22 (01)
  • [46] Predicting long-term progression of Alzheimer’s disease using a multimodal deep learning model incorporating interaction effects
    Yifan Wang
    Ruitian Gao
    Ting Wei
    Luke Johnston
    Xin Yuan
    Yue Zhang
    Zhangsheng Yu
    [J]. Journal of Translational Medicine, 22
  • [47] Angiosarcoma of bladder: Long-term survival after multimodal therapy
    Pazona, Joseph F.
    Gupta, Rohit
    Wysock, James
    Schaeffer, Anthony J.
    Smith, Norm D.
    [J]. UROLOGY, 2007, 69 (03) : 575.e9 - 575.e10
  • [48] Prediction of recurrence risk in endometrial cancer with multimodal deep learning
    Volinsky-Fremond, Sarah
    Horeweg, Nanda
    Andani, Sonali
    Wolf, Jurriaan Barkey
    Lafarge, Maxime W.
    de Kroon, Cor D.
    Ortoft, Gitte
    Hogdall, Estrid
    Dijkstra, Jouke
    Jobsen, Jan J.
    Lutgens, Ludy C. H. W.
    Powell, Melanie E.
    Mileshkin, Linda R.
    Mackay, Helen
    Leary, Alexandra
    Katsaros, Dionyssios
    Nijman, Hans W.
    de Boer, Stephanie M.
    Nout, Remi A.
    de Bruyn, Marco
    Church, David
    Smit, Vincent T. H. B. M.
    Creutzberg, Carien L.
    Koelzer, Viktor H.
    Bosse, Tjalling
    [J]. NATURE MEDICINE, 2024,
  • [49] Survival Prediction for Non-Small Cell Lung Cancer Based on Multimodal Fusion and Deep Learning
    Ma, Xiaopu
    Ning, Fei
    Xu, Xiaofeng
    Shan, Jiangdan
    Li, He
    Tian, Xiao
    Li, Shuai
    [J]. IEEE ACCESS, 2024, 12 : 123236 - 123249
  • [50] Prognostic Factors for Long-Term Survival after multimodal Therapy for Patients with Head and Neck Cancer
    Held, T.
    Boettcher, E.
    Lang, K.
    Eichkorn, T.
    Regnery, S.
    Freudlsperger, C.
    Weusthof, K.
    Moratin, J.
    Metzger, K.
    Zaoui, K.
    Krauss, J.
    Harrabi, S.
    Herfarth, K.
    Debus, J.
    Adeberg, S.
    [J]. STRAHLENTHERAPIE UND ONKOLOGIE, 2021, 197 (SUPPL 1) : S120 - S120