Prediction of recurrence risk in endometrial cancer with multimodal deep learning

被引:1
|
作者
Volinsky-Fremond, Sarah [1 ]
Horeweg, Nanda [2 ]
Andani, Sonali [3 ,4 ,5 ]
Wolf, Jurriaan Barkey [1 ]
Lafarge, Maxime W. [4 ]
de Kroon, Cor D. [6 ]
Ortoft, Gitte [7 ]
Hogdall, Estrid [8 ]
Dijkstra, Jouke [9 ]
Jobsen, Jan J. [10 ]
Lutgens, Ludy C. H. W. [11 ]
Powell, Melanie E. [12 ]
Mileshkin, Linda R. [13 ]
Mackay, Helen [14 ]
Leary, Alexandra [15 ]
Katsaros, Dionyssios [16 ]
Nijman, Hans W. [17 ]
de Boer, Stephanie M. [2 ]
Nout, Remi A. [18 ]
de Bruyn, Marco [17 ]
Church, David [19 ,20 ]
Smit, Vincent T. H. B. M. [1 ]
Creutzberg, Carien L. [2 ]
Koelzer, Viktor H. [4 ,21 ]
Bosse, Tjalling [1 ]
机构
[1] Leiden Univ, Med Ctr, Dept Pathol, Leiden, Netherlands
[2] Leiden Univ, Med Ctr, Dept Radiat Oncol, Leiden, Netherlands
[3] Dept Comp Sci, ETH Zurich, Zurich, Switzerland
[4] Univ Hosp, Univ Zurich, Dept Pathol & Mol Pathol, Zurich, Switzerland
[5] Swiss Inst Bioinformat, Lausanne, Switzerland
[6] Leiden Univ, Med Ctr, Dept Gynecol & Obstet, Leiden, Netherlands
[7] Copenhagen Univ Hosp, Dept Gynecol, Rigshosp, Copenhagen, Denmark
[8] Herlev Univ Hosp, Dept Pathol, Herlev, Denmark
[9] Leiden Univ, Med Ctr, Dept Radiol, Leiden, Netherlands
[10] Dept Radiat Oncol, Med Spectrum Twente, Enschede, Netherlands
[11] Maastricht Radiat Oncol, MAASTRO, Maastricht, Netherlands
[12] Dept Clin Oncol, Barts Hlth NHS Trust, London, England
[13] Peter MacCallum Canc Ctr, Dept Med Oncol, Melbourne, Vic, Australia
[14] Sunnybrook Hlth Sci Ctr, Odette Canc Ctr, Toronto, ON, Canada
[15] Gustave Roussy Inst, Dept Med Oncol, Villejuif, France
[16] Univ Turin, Citta Salute & S Anna Hosp, Dept Surg Sci, Gynecol Oncol, Turin, Italy
[17] Univ Med Ctr Groningen, Univ Groningen, Dept Obstet & Gynecol, Groningen, Netherlands
[18] Univ Med Ctr Rotterdam, Erasmus MC, Canc Inst, Rotterdam, Netherlands
[19] Univ Oxford, Wellcome Ctr Human Genet, Oxford, England
[20] Oxford Univ Hosp NHS Fdn Trust, Oxford NIHR Comprehens Biomed Res Ctr, Oxford, England
[21] Univ Hosp Basel, Inst Med Genet & Pathol, Basel, Switzerland
关键词
WHOLE-SLIDE IMAGES; RADIOTHERAPY; CLASSIFICATION; CARCINOMA;
D O I
10.1038/s41591-024-02993-w
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Predicting distant recurrence of endometrial cancer (EC) is crucial for personalized adjuvant treatment. The current gold standard of combined pathological and molecular profiling is costly, hampering implementation. Here we developed HECTOR (histopathology-based endometrial cancer tailored outcome risk), a multimodal deep learning prognostic model using hematoxylin and eosin-stained, whole-slide images and tumor stage as input, on 2,072 patients from eight EC cohorts including the PORTEC-1/-2/-3 randomized trials. HECTOR demonstrated C-indices in internal (n = 353) and two external (n = 160 and n = 151) test sets of 0.789, 0.828 and 0.815, respectively, outperforming the current gold standard, and identified patients with markedly different outcomes (10-year distant recurrence-free probabilities of 97.0%, 77.7% and 58.1% for HECTOR low-, intermediate- and high-risk groups, respectively, by Kaplan-Meier analysis). HECTOR also predicted adjuvant chemotherapy benefit better than current methods. Morphological and genomic feature extraction identified correlates of HECTOR risk groups, some with therapeutic potential. HECTOR improves on the current gold standard and may help delivery of personalized treatment in EC. A multimodal deep learning prognostic model based on histopathology outperforms current gold standards for identifying patients with endometrial cancer with different outcomes, in multiple external validation cohorts.
引用
收藏
页数:25
相关论文
共 50 条
  • [1] Prediction of recurrence risk in endometrial cancer with multimodal deep learning (May, 10.1038/s41591-024-02993-w, 2024)
    Volinsky-Fremond, Sarah
    Horeweg, Nanda
    Andani, Sonali
    Barkey Wolf, Jurriaan
    Lafarge, Maxime W.
    de Kroon, Cor D.
    Ortoft, Gitte
    Hogdall, Estrid
    Dijkstra, Jouke
    Jobsen, Jan J.
    Lutgens, Ludy C. H. W.
    Powell, Melanie E.
    Mileshkin, Linda R.
    Mackay, Helen
    Leary, Alexandra
    Katsaros, Dionyssios
    Nijman, Hans W.
    de Boer, Stephanie M.
    Nout, Remi A.
    de Bruyn, Marco
    Church, David
    Smit, Vincent T. H. B. M.
    Creutzberg, Carien L.
    Koelzer, Viktor H.
    Bosse, Tjalling
    [J]. NATURE MEDICINE, 2024, : 2092 - 2092
  • [2] Multimodal Prediction of Breast Cancer Recurrence Assays and Risk of Recurrence
    Howard, Frederick M.
    Dolezal, James M.
    Kochanny, Sara
    Khramtsova, Galina
    Vickery, Jasmine
    Srisuwananukorn, Andrew
    Woodard, Anna
    Chen, Nan
    Nanda, Rita
    Perou, Charles
    Olopade, Olufunmilayo I.
    Huo, Dezheng
    Pearson, Alexander
    [J]. CANCER RESEARCH, 2023, 83 (05)
  • [3] Multimodal deep learning improves recurrence risk prediction in pediatric low-grade gliomas
    Mahootiha, Maryamalsadat
    Tak, Divyanshu
    Ye, Zezhong
    Zapaishchykova, Anna
    Likitlersuang, Jirapat
    Climent Pardo, Juan Carlos
    Boyd, Aidan
    Vajapeyam, Sridhar
    Chopra, Rishi
    Prabhu, Sanjay P.
    Liu, Kevin X.
    Elhalawani, Hesham
    Nabavizadeh, Ali
    Familiar, Ariana
    Mueller, Sabine
    Aerts, Hugo J. W. L.
    Bandopadhayay, Pratiti
    Ligon, Keith L.
    Haas-Kogan, Daphne
    Poussaint, Tina Y.
    Qadir, Hemin Ali
    Balasingham, Ilangko
    Kann, Benjamin H.
    [J]. NEURO-ONCOLOGY, 2024,
  • [4] Lung Cancer Recurrence Risk Prediction through Integrated Deep Learning Evaluation
    Huang, Peng
    Illei, Peter B.
    Franklin, Wilbur
    Wu, Pei-Hsun
    Forde, Patrick M.
    Ashrafinia, Saeed
    Hu, Chen
    Khan, Hamza
    Vadvala, Harshna V.
    Shih, Ie-Ming
    Battafarano, Richard J.
    Jacobs, Michael A.
    Kong, Xiangrong
    Lewis, Justine
    Yan, Rongkai
    Chen, Yun
    Housseau, Franck
    Rahmim, Arman
    Fishman, Elliot K.
    Ettinger, David S.
    Pienta, Kenneth J.
    Wirtz, Denis
    Brock, Malcolm, V
    Lam, Stephen
    Gabrielson, Edward
    [J]. CANCERS, 2022, 14 (17)
  • [5] Multimodal Deep Learning for Prognosis Prediction in Renal Cancer
    Schulz, Stefan
    Woerl, Ann-Christin
    Jungmann, Florian
    Glasner, Christina
    Stenzel, Philipp
    Strobl, Stephanie
    Fernandez, Aurelie
    Wagner, Daniel-Christoph
    Haferkamp, Axel
    Mildenberger, Peter
    Roth, Wilfried
    Foersch, Sebastian
    [J]. FRONTIERS IN ONCOLOGY, 2021, 11
  • [6] Multimodal Deep Learning for Cancer Survival Prediction: A Review
    Zhang, Ge
    Ma, Chenwei
    Yan, Chaokun
    Luo, Huimin
    Wang, Jianlin
    Liang, Wenjuan
    Luo, Junwei
    [J]. CURRENT BIOINFORMATICS, 2024,
  • [7] Deep Learning for Intelligent Recognition and Prediction of Endometrial Cancer
    Zhang, Yan
    Gong, Cuilan
    Zheng, Ling
    Li, Xiaoyan
    Yang, Xiaomei
    [J]. JOURNAL OF HEALTHCARE ENGINEERING, 2021, 2021
  • [8] Integration of clinical features and deep learning on pathology for the prediction of breast cancer recurrence assays and risk of recurrence
    Frederick M. Howard
    James Dolezal
    Sara Kochanny
    Galina Khramtsova
    Jasmine Vickery
    Andrew Srisuwananukorn
    Anna Woodard
    Nan Chen
    Rita Nanda
    Charles M. Perou
    Olufunmilayo I. Olopade
    Dezheng Huo
    Alexander T. Pearson
    [J]. npj Breast Cancer, 9
  • [9] Integration of clinical features and deep learning on pathology for the prediction of breast cancer recurrence assays and risk of recurrence
    Howard, Frederick M.
    Dolezal, James
    Kochanny, Sara
    Khramtsova, Galina
    Vickery, Jasmine
    Srisuwananukorn, Andrew
    Woodard, Anna
    Chen, Nan
    Nanda, Rita
    Perou, Charles M.
    Olopade, Olufunmilayo I.
    Huo, Dezheng
    Pearson, Alexander T.
    [J]. NPJ BREAST CANCER, 2023, 9 (01)
  • [10] Prediction of endometrial cancer recurrence by using a novel machine learning algorithm
    Houri, O.
    Gil, Y.
    Raban, O.
    Yeoshoua, E.
    Sabah, G.
    Jakobson-Setton, A.
    Eitan, R.
    [J]. GYNECOLOGIC ONCOLOGY, 2020, 159 : 207 - 208