Integration of clinical features and deep learning on pathology for the prediction of breast cancer recurrence assays and risk of recurrence

被引:14
|
作者
Howard, Frederick M. [1 ]
Dolezal, James [1 ]
Kochanny, Sara [1 ]
Khramtsova, Galina [1 ]
Vickery, Jasmine [2 ]
Srisuwananukorn, Andrew [3 ]
Woodard, Anna [1 ,4 ]
Chen, Nan [1 ]
Nanda, Rita [1 ]
Perou, Charles M. [5 ]
Olopade, Olufunmilayo I. [1 ]
Huo, Dezheng [6 ]
Pearson, Alexander T. [1 ]
机构
[1] Univ Chicago, Dept Med, Chicago, IL 60637 USA
[2] Univ Chicago, Dept Pathol, Chicago, IL USA
[3] Icahn Sch Med Mt Sinai, Tisch Canc Inst, New York, NY USA
[4] Univ Chicago, Dept Comp Sci, Chicago, IL USA
[5] Univ N Carolina, Lineberger Comprehens Canc Ctr, Dept Genet, Chapel Hill, NC USA
[6] Univ Chicago, Dept Publ Hlth Sci, Chicago, IL USA
关键词
ONCOTYPE DX;
D O I
10.1038/s41523-023-00530-5
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Gene expression-based recurrence assays are strongly recommended to guide the use of chemotherapy in hormone receptor-positive, HER2-negative breast cancer, but such testing is expensive, can contribute to delays in care, and may not be available in low-resource settings. Here, we describe the training and independent validation of a deep learning model that predicts recurrence assay result and risk of recurrence using both digital histology and clinical risk factors. We demonstrate that this approach outperforms an established clinical nomogram (area under the receiver operating characteristic curve of 0.83 versus 0.76 in an external validation cohort, p = 0.0005) and can identify a subset of patients with excellent prognoses who may not need further genomic testing.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Integration of clinical features and deep learning on pathology for the prediction of breast cancer recurrence assays and risk of recurrence
    Frederick M. Howard
    James Dolezal
    Sara Kochanny
    Galina Khramtsova
    Jasmine Vickery
    Andrew Srisuwananukorn
    Anna Woodard
    Nan Chen
    Rita Nanda
    Charles M. Perou
    Olufunmilayo I. Olopade
    Dezheng Huo
    Alexander T. Pearson
    [J]. npj Breast Cancer, 9
  • [2] Multimodal Prediction of Breast Cancer Recurrence Assays and Risk of Recurrence
    Howard, Frederick M.
    Dolezal, James M.
    Kochanny, Sara
    Khramtsova, Galina
    Vickery, Jasmine
    Srisuwananukorn, Andrew
    Woodard, Anna
    Chen, Nan
    Nanda, Rita
    Perou, Charles
    Olopade, Olufunmilayo I.
    Huo, Dezheng
    Pearson, Alexander
    [J]. CANCER RESEARCH, 2023, 83 (05)
  • [3] Prediction of recurrence risk in endometrial cancer with multimodal deep learning
    Volinsky-Fremond, Sarah
    Horeweg, Nanda
    Andani, Sonali
    Wolf, Jurriaan Barkey
    Lafarge, Maxime W.
    de Kroon, Cor D.
    Ortoft, Gitte
    Hogdall, Estrid
    Dijkstra, Jouke
    Jobsen, Jan J.
    Lutgens, Ludy C. H. W.
    Powell, Melanie E.
    Mileshkin, Linda R.
    Mackay, Helen
    Leary, Alexandra
    Katsaros, Dionyssios
    Nijman, Hans W.
    de Boer, Stephanie M.
    Nout, Remi A.
    de Bruyn, Marco
    Church, David
    Smit, Vincent T. H. B. M.
    Creutzberg, Carien L.
    Koelzer, Viktor H.
    Bosse, Tjalling
    [J]. NATURE MEDICINE, 2024,
  • [4] Prediction of recurrence in locally advanced breast cancer using deep learning analysis
    Jo, I.
    Kim, J.
    Jeong, S.
    Chae, Y.
    Lee, S.
    [J]. EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2020, 47 (SUPPL 1) : S548 - S549
  • [5] Breast Cancer Recurrence Risk Predictor Using a Deep Learning Multi-omics Data Integration Framework
    Rahman, Ariana
    Zhang, Yining
    Park, Jin G.
    [J]. 2023 IEEE 36TH INTERNATIONAL SYMPOSIUM ON COMPUTER-BASED MEDICAL SYSTEMS, CBMS, 2023, : 921 - 922
  • [6] Lung Cancer Recurrence Risk Prediction through Integrated Deep Learning Evaluation
    Huang, Peng
    Illei, Peter B.
    Franklin, Wilbur
    Wu, Pei-Hsun
    Forde, Patrick M.
    Ashrafinia, Saeed
    Hu, Chen
    Khan, Hamza
    Vadvala, Harshna V.
    Shih, Ie-Ming
    Battafarano, Richard J.
    Jacobs, Michael A.
    Kong, Xiangrong
    Lewis, Justine
    Yan, Rongkai
    Chen, Yun
    Housseau, Franck
    Rahmim, Arman
    Fishman, Elliot K.
    Ettinger, David S.
    Pienta, Kenneth J.
    Wirtz, Denis
    Brock, Malcolm, V
    Lam, Stephen
    Gabrielson, Edward
    [J]. CANCERS, 2022, 14 (17)
  • [7] Machine learning-based models for the prediction of breast cancer recurrence risk
    Zuo, Duo
    Yang, Lexin
    Jin, Yu
    Qi, Huan
    Liu, Yahui
    Ren, Li
    [J]. BMC MEDICAL INFORMATICS AND DECISION MAKING, 2023, 23 (01)
  • [8] Machine learning-based models for the prediction of breast cancer recurrence risk
    Duo Zuo
    Lexin Yang
    Yu Jin
    Huan Qi
    Yahui Liu
    Li Ren
    [J]. BMC Medical Informatics and Decision Making, 23
  • [9] Ensemble learning method for the prediction of breast cancer recurrence
    Almuhaidib, Daad Abdullah
    Shaiba, Hadil Ahmed
    Alharbi, Najla Ghazi
    Alotaibi, Sara Muhammad
    Albusayyis, Fatima Moteb
    Alzaid, Mashael Abdulalim
    Almadhi, Reem Mohammed
    [J]. 2018 1ST INTERNATIONAL CONFERENCE ON COMPUTER APPLICATIONS & INFORMATION SECURITY (ICCAIS' 2018), 2018,
  • [10] Prediction of Breast Cancer Recurrence Risk Categories Using Automatic Mitotic Detection Algorithms Based on Deep Learning
    Romo-Bucheli, David
    Janowczyk, Andrew
    Gilmore, Hannah
    Romero, Eduardo
    Madabhushi, Anant
    [J]. LABORATORY INVESTIGATION, 2016, 96 : 69A - 69A