Prediction of recurrence risk in endometrial cancer with multimodal deep learning

被引:1
|
作者
Volinsky-Fremond, Sarah [1 ]
Horeweg, Nanda [2 ]
Andani, Sonali [3 ,4 ,5 ]
Wolf, Jurriaan Barkey [1 ]
Lafarge, Maxime W. [4 ]
de Kroon, Cor D. [6 ]
Ortoft, Gitte [7 ]
Hogdall, Estrid [8 ]
Dijkstra, Jouke [9 ]
Jobsen, Jan J. [10 ]
Lutgens, Ludy C. H. W. [11 ]
Powell, Melanie E. [12 ]
Mileshkin, Linda R. [13 ]
Mackay, Helen [14 ]
Leary, Alexandra [15 ]
Katsaros, Dionyssios [16 ]
Nijman, Hans W. [17 ]
de Boer, Stephanie M. [2 ]
Nout, Remi A. [18 ]
de Bruyn, Marco [17 ]
Church, David [19 ,20 ]
Smit, Vincent T. H. B. M. [1 ]
Creutzberg, Carien L. [2 ]
Koelzer, Viktor H. [4 ,21 ]
Bosse, Tjalling [1 ]
机构
[1] Leiden Univ, Med Ctr, Dept Pathol, Leiden, Netherlands
[2] Leiden Univ, Med Ctr, Dept Radiat Oncol, Leiden, Netherlands
[3] Dept Comp Sci, ETH Zurich, Zurich, Switzerland
[4] Univ Hosp, Univ Zurich, Dept Pathol & Mol Pathol, Zurich, Switzerland
[5] Swiss Inst Bioinformat, Lausanne, Switzerland
[6] Leiden Univ, Med Ctr, Dept Gynecol & Obstet, Leiden, Netherlands
[7] Copenhagen Univ Hosp, Dept Gynecol, Rigshosp, Copenhagen, Denmark
[8] Herlev Univ Hosp, Dept Pathol, Herlev, Denmark
[9] Leiden Univ, Med Ctr, Dept Radiol, Leiden, Netherlands
[10] Dept Radiat Oncol, Med Spectrum Twente, Enschede, Netherlands
[11] Maastricht Radiat Oncol, MAASTRO, Maastricht, Netherlands
[12] Dept Clin Oncol, Barts Hlth NHS Trust, London, England
[13] Peter MacCallum Canc Ctr, Dept Med Oncol, Melbourne, Vic, Australia
[14] Sunnybrook Hlth Sci Ctr, Odette Canc Ctr, Toronto, ON, Canada
[15] Gustave Roussy Inst, Dept Med Oncol, Villejuif, France
[16] Univ Turin, Citta Salute & S Anna Hosp, Dept Surg Sci, Gynecol Oncol, Turin, Italy
[17] Univ Med Ctr Groningen, Univ Groningen, Dept Obstet & Gynecol, Groningen, Netherlands
[18] Univ Med Ctr Rotterdam, Erasmus MC, Canc Inst, Rotterdam, Netherlands
[19] Univ Oxford, Wellcome Ctr Human Genet, Oxford, England
[20] Oxford Univ Hosp NHS Fdn Trust, Oxford NIHR Comprehens Biomed Res Ctr, Oxford, England
[21] Univ Hosp Basel, Inst Med Genet & Pathol, Basel, Switzerland
关键词
WHOLE-SLIDE IMAGES; RADIOTHERAPY; CLASSIFICATION; CARCINOMA;
D O I
10.1038/s41591-024-02993-w
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Predicting distant recurrence of endometrial cancer (EC) is crucial for personalized adjuvant treatment. The current gold standard of combined pathological and molecular profiling is costly, hampering implementation. Here we developed HECTOR (histopathology-based endometrial cancer tailored outcome risk), a multimodal deep learning prognostic model using hematoxylin and eosin-stained, whole-slide images and tumor stage as input, on 2,072 patients from eight EC cohorts including the PORTEC-1/-2/-3 randomized trials. HECTOR demonstrated C-indices in internal (n = 353) and two external (n = 160 and n = 151) test sets of 0.789, 0.828 and 0.815, respectively, outperforming the current gold standard, and identified patients with markedly different outcomes (10-year distant recurrence-free probabilities of 97.0%, 77.7% and 58.1% for HECTOR low-, intermediate- and high-risk groups, respectively, by Kaplan-Meier analysis). HECTOR also predicted adjuvant chemotherapy benefit better than current methods. Morphological and genomic feature extraction identified correlates of HECTOR risk groups, some with therapeutic potential. HECTOR improves on the current gold standard and may help delivery of personalized treatment in EC. A multimodal deep learning prognostic model based on histopathology outperforms current gold standards for identifying patients with endometrial cancer with different outcomes, in multiple external validation cohorts.
引用
收藏
页数:25
相关论文
共 50 条
  • [41] Multimodal Deep Learning Crime Prediction Using Tweets
    Tam, Sakirin
    Tanriover, Omer Ozgur
    [J]. IEEE ACCESS, 2023, 11 : 93204 - 93214
  • [42] DeAF: A multimodal deep learning framework for disease prediction
    Li, Kangshun
    Chen, Can
    Cao, Wuteng
    Wang, Hui
    Han, Shuai
    Wang, Renjie
    Ye, Zaisheng
    Wu, Zhijie
    Wang, Wenxiang
    Cai, Leng
    Ding, Deyu
    Yuan, Zixu
    [J]. COMPUTERS IN BIOLOGY AND MEDICINE, 2023, 156
  • [43] Hotel Stock Prediction Based on Multimodal Deep Learning
    Liu Y.
    Zhang W.
    Hu Y.
    Mao J.
    Huang F.
    [J]. Data Analysis and Knowledge Discovery, 2023, 7 (05) : 21 - 32
  • [44] Deep learning with multimodal representation for pancancer prognosis prediction
    Cheerla, Anika
    Gevaert, Olivier
    [J]. BIOINFORMATICS, 2019, 35 (14) : I446 - I454
  • [45] Risk Factors for Node Affectation and Recurrence in Endometrial Cancer
    Alonso, Sonsoles
    Lapuente, Fernando
    Gonzalez-Martin, Antonio
    Chiva, Luis
    [J]. CURRENT WOMENS HEALTH REVIEWS, 2011, 7 (04) : 320 - 325
  • [46] MULTIMODAL FUSION OF IMAGING AND GENOMICS FOR LUNG CANCER RECURRENCE PREDICTION
    Subramanian, Vaishnavi
    Do, Minh N.
    Syeda-Mahmood, Tanveer
    [J]. 2020 IEEE 17TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI 2020), 2020, : 804 - 808
  • [47] Machine learning-based models for the prediction of breast cancer recurrence risk
    Zuo, Duo
    Yang, Lexin
    Jin, Yu
    Qi, Huan
    Liu, Yahui
    Ren, Li
    [J]. BMC MEDICAL INFORMATICS AND DECISION MAKING, 2023, 23 (01)
  • [48] Machine learning-based models for the prediction of breast cancer recurrence risk
    Duo Zuo
    Lexin Yang
    Yu Jin
    Huan Qi
    Yahui Liu
    Li Ren
    [J]. BMC Medical Informatics and Decision Making, 23
  • [49] Deep Learning with Multimodal Integration for Predicting Recurrence in Patients with Non-Small Cell Lung Cancer
    Kim, Gihyeon
    Moon, Sehwa
    Choi, Jang-Hwan
    [J]. SENSORS, 2022, 22 (17)
  • [50] Machine Learning for Endometrial Cancer Prediction and Prognostication
    Bhardwaj, Vipul
    Sharma, Arundhiti
    Parambath, Snijesh Valiya
    Gul, Ijaz
    Zhang, Xi
    Lobie, Peter E.
    Qin, Peiwu
    Pandey, Vijay
    [J]. FRONTIERS IN ONCOLOGY, 2022, 12