Predicting long-term progression of Alzheimer’s disease using a multimodal deep learning model incorporating interaction effects

被引:0
|
作者
Yifan Wang
Ruitian Gao
Ting Wei
Luke Johnston
Xin Yuan
Yue Zhang
Zhangsheng Yu
机构
[1] Shanghai Jiao Tong University,Department of Bioinformatics and Biostatistics, School of Life Sciences and Biotechnology
[2] Shanghai Jiao Tong University,SJTU
[3] Shanghai Jiao Tong University,Yale Joint Center for Biostatistics and Data Science
[4] Shanghai Jiao Tong University School of Medicine,School of Mathematical Sciences
关键词
Artificial intelligence; Deep learning; Alzheimer’s disease; Early diagnosis; Multimodal biomarkers;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [1] Predicting long-term progression of Alzheimer's disease using a multimodal deep learning model incorporating interaction effects
    Wang, Yifan
    Gao, Ruitian
    Wei, Ting
    Johnston, Luke
    Yuan, Xin
    Zhang, Yue
    Yu, Zhangsheng
    [J]. JOURNAL OF TRANSLATIONAL MEDICINE, 2024, 22 (01)
  • [2] Deep Learning Based Multimodal Progression Modeling for Alzheimer's Disease
    Yang, Liuqing
    Wang, Xifeng
    Guo, Qi
    Gladstein, Scott
    Wooten, Dustin
    Li, Tengfei
    Robieson, Weining Z.
    Sun, Yan
    Huang, Xin
    [J]. STATISTICS IN BIOPHARMACEUTICAL RESEARCH, 2021, 13 (03): : 337 - 343
  • [3] Predicting Alzheimer’s disease progression using multi-modal deep learning approach
    Garam Lee
    Kwangsik Nho
    Byungkon Kang
    Kyung-Ah Sohn
    Dokyoon Kim
    [J]. Scientific Reports, 9
  • [4] Predicting Alzheimer's disease progression using multi-modal deep learning approach
    Lee, Garam
    Nho, Kwangsik
    Kang, Byungkon
    Sohn, Kyung-Ah
    Kim, Dokyoon
    Weiner, Michael W.
    Aisen, Paul
    Petersen, Ronald
    Jack, Clifford R., Jr.
    Jagust, William
    Trojanowki, John Q.
    Toga, Arthur W.
    Beckett, Laurel
    Green, Robert C.
    Saykin, Andrew J.
    Morris, John
    Shaw, Leslie M.
    Khachaturian, Zaven
    Sorensen, Greg
    Carrillo, Maria
    Kuller, Lew
    Raichle, Marc
    Paul, Steven
    Davies, Peter
    Fillit, Howard
    Hefti, Franz
    Holtzman, Davie
    Mesulam, M. Marcel
    Potter, William
    Snyder, Peter
    Montine, Tom
    Thomas, Ronald G.
    Donohue, Michael
    Walter, Sarah
    Sather, Tamie
    Jiminez, Gus
    Balasubramanian, Archana B.
    Mason, Jennifer
    Sim, Iris
    Harvey, Danielle
    Bernstein, Matthew
    Fox, Nick
    Thompson, Paul
    Schuff, Norbert
    DeCArli, Charles
    Borowski, Bret
    Gunter, Jeff
    Senjem, Matt
    Vemuri, Prashanthi
    Jones, David
    [J]. SCIENTIFIC REPORTS, 2019, 9 (1)
  • [5] AN EFFICIENT DEEP LEARNING MODEL FOR PREDICTING ALZHEIMER'S DISEASE DIAGNOSIS BY USING PET
    Peng Yifan
    Ding Bowen
    [J]. 2020 17TH INTERNATIONAL COMPUTER CONFERENCE ON WAVELET ACTIVE MEDIA TECHNOLOGY AND INFORMATION PROCESSING (ICCWAMTIP), 2020, : 366 - 372
  • [6] A multimodal machine learning model for predicting dementia conversion in Alzheimer's disease
    Lee, Min-Woo
    Kim, Hye Weon
    Choe, Yeong Sim
    Yang, Hyeon Sik
    Lee, Jiyeon
    Lee, Hyunji
    Yong, Jung Hyeon
    Kim, Donghyeon
    Lee, Minho
    Kang, Dong Woo
    Jeon, So Yeon
    Son, Sang Joon
    Lee, Young-Min
    Kim, Hyug-Gi
    Kim, Regina E. Y.
    Lim, Hyun Kook
    [J]. SCIENTIFIC REPORTS, 2024, 14 (01):
  • [7] Multimodal multitask deep learning model for Alzheimer's disease progression detection based on time series data
    El-Sappagh, Shaker
    Abuhmed, Tamer
    Islam, S. M. Riazul
    Kwak, Kyung Sup
    [J]. NEUROCOMPUTING, 2020, 412 : 197 - 215
  • [8] Long-term effects of Alzheimer's disease treatment
    Wimo, Anders
    [J]. LANCET NEUROLOGY, 2015, 14 (12): : 1145 - 1146
  • [9] Long-term effects of Alzheimer's disease treatment
    Atri, A.
    [J]. EUROPEAN JOURNAL OF NEUROLOGY, 2010, 17 : 661 - 661
  • [10] Long-term cancer survival prediction using multimodal deep learning
    Luís A. Vale-Silva
    Karl Rohr
    [J]. Scientific Reports, 11