A multimodal machine learning model for predicting dementia conversion in Alzheimer's disease

被引:2
|
作者
Lee, Min-Woo [1 ]
Kim, Hye Weon [1 ]
Choe, Yeong Sim [1 ]
Yang, Hyeon Sik [1 ]
Lee, Jiyeon [1 ]
Lee, Hyunji [1 ]
Yong, Jung Hyeon [1 ]
Kim, Donghyeon [1 ]
Lee, Minho [1 ]
Kang, Dong Woo [2 ]
Jeon, So Yeon [3 ,4 ]
Son, Sang Joon [5 ]
Lee, Young-Min [6 ]
Kim, Hyug-Gi [7 ]
Kim, Regina E. Y. [1 ]
Lim, Hyun Kook [8 ,9 ]
机构
[1] Neurophet Inc, Res Inst, Seoul 06234, South Korea
[2] Catholic Univ Korea, Seoul St Marys Hosp, Coll Med, Dept Psychiat, Seoul 06591, South Korea
[3] Chungnam Natl Univ Hosp, Dept Psychiat, Daejeon 35015, South Korea
[4] Chungnam Natl Univ, Coll Med, Dept Psychiat, Daejeon 35015, South Korea
[5] Ajou Univ, Sch Med, Dept Psychiat, Suwon 16499, South Korea
[6] Pusan Natl Univ, Sch Med, Dept Psychiat, Busan 49241, South Korea
[7] Kyung Hee Univ, Kyung Hee Univ Hosp, Sch Med, Dept Radiol, Seoul 02447, South Korea
[8] Catholic Univ Korea, Yeouido St Marys Hosp, Coll Med, Dept Psychiat, 10 63 Ro, Seoul 07345, South Korea
[9] Catholic Univ Korea, CMC Inst Basic Med Sci, Catholic Med Ctr, 222 Banpo Daero, Seoul 06591, South Korea
来源
SCIENTIFIC REPORTS | 2024年 / 14卷 / 01期
关键词
MILD COGNITIVE IMPAIRMENT; PROGRESSION; MRI; ATROPHY;
D O I
10.1038/s41598-024-60134-2
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Alzheimer's disease (AD) accounts for 60-70% of the population with dementia. Mild cognitive impairment (MCI) is a diagnostic entity defined as an intermediate stage between subjective cognitive decline and dementia, and about 10-15% of people annually convert to AD. We aimed to investigate the most robust model and modality combination by combining multi-modality image features based on demographic characteristics in six machine learning models. A total of 196 subjects were enrolled from four hospitals and the Alzheimer's Disease Neuroimaging Initiative dataset. During the four-year follow-up period, 47 (24%) patients progressed from MCI to AD. Volumes of the regions of interest, white matter hyperintensity, and regional Standardized Uptake Value Ratio (SUVR) were analyzed using T1, T2-weighted-Fluid-Attenuated Inversion Recovery (T2-FLAIR) MRIs, and amyloid PET (alpha PET), along with automatically provided hippocampal occupancy scores (HOC) and Fazekas scales. As a result of testing the robustness of the model, the GBM model was the most stable, and in modality combination, model performance was further improved in the absence of T2-FLAIR image features. Our study predicts the probability of AD conversion in MCI patients, which is expected to be useful information for clinician's early diagnosis and treatment plan design.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Machine Learning Based Multimodal Neuroimaging Genomics Dementia Score for Predicting Future Conversion to Alzheimer's Disease
    Mirabnahrazam, Ghazal
    Ma, Da
    Lee, Sieun
    Popuri, Karteek
    Lee, Hyunwoo
    Cao, Jiguo
    Wang, Lei
    Galvin, James E.
    Beg, Mirza Faisal
    JOURNAL OF ALZHEIMERS DISEASE, 2022, 87 (03) : 1345 - 1365
  • [2] A hybrid multimodal machine learning model for Detecting Alzheimer's disease
    Sheng, Jinhua
    Zhang, Qian
    Zhang, Qiao
    Wang, Luyun
    Yang, Ze
    Xin, Yu
    Wang, Binbing
    COMPUTERS IN BIOLOGY AND MEDICINE, 2024, 170
  • [3] Predicting Alzheimer's disease CSF core biomarkers: a multimodal Machine Learning approach
    Gaeta, Anna Michela
    Quijada-Lopez, Maria
    Barbe, Ferran
    Vaca, Rafaela
    Pujol, Montse
    Minguez, Olga
    Sanchez-de-la-Torre, Manuel
    Munoz-Barrutia, Arrate
    Pinol-Ripoll, Gerard
    FRONTIERS IN AGING NEUROSCIENCE, 2024, 16
  • [4] Multimodal deep learning for Alzheimer's disease dementia assessment
    Qiu, Shangran
    Miller, Matthew, I
    Joshi, Prajakta S.
    Lee, Joyce C.
    Xue, Chonghua
    Ni, Yunruo
    Wang, Yuwei
    De Anda-Duran, Ileana
    Hwang, Phillip H.
    Cramer, Justin A.
    Dwyer, Brigid C.
    Hao, Honglin
    Kaku, Michelle C.
    Kedar, Sachin
    Lee, Peter H.
    Mian, Asim Z.
    Murman, Daniel L.
    O'Shea, Sarah
    Paul, Aaron B.
    Saint-Hilaire, Marie-Helene
    Sartor, E. Alton
    Saxena, Aneeta R.
    Shih, Ludy C.
    Small, Juan E.
    Smith, Maximilian J.
    Swaminathan, Arun
    Takahashi, Courtney E.
    Taraschenko, Olga
    You, Hui
    Yuan, Jing
    Zhou, Yan
    Zhu, Shuhan
    Alosco, Michael L.
    Mez, Jesse
    Stein, Thor D.
    Poston, Kathleen L.
    Au, Rhoda
    Kolachalama, Vijaya B.
    NATURE COMMUNICATIONS, 2022, 13 (01)
  • [5] Multimodal deep learning for Alzheimer’s disease dementia assessment
    Shangran Qiu
    Matthew I. Miller
    Prajakta S. Joshi
    Joyce C. Lee
    Chonghua Xue
    Yunruo Ni
    Yuwei Wang
    Ileana De Anda-Duran
    Phillip H. Hwang
    Justin A. Cramer
    Brigid C. Dwyer
    Honglin Hao
    Michelle C. Kaku
    Sachin Kedar
    Peter H. Lee
    Asim Z. Mian
    Daniel L. Murman
    Sarah O’Shea
    Aaron B. Paul
    Marie-Helene Saint-Hilaire
    E. Alton Sartor
    Aneeta R. Saxena
    Ludy C. Shih
    Juan E. Small
    Maximilian J. Smith
    Arun Swaminathan
    Courtney E. Takahashi
    Olga Taraschenko
    Hui You
    Jing Yuan
    Yan Zhou
    Shuhan Zhu
    Michael L. Alosco
    Jesse Mez
    Thor D. Stein
    Kathleen L. Poston
    Rhoda Au
    Vijaya B. Kolachalama
    Nature Communications, 13
  • [6] Predicting conversion of questionable dementia to Alzheimer disease
    Liu, HC
    Wang, PN
    Lin, KN
    Liu, CY
    Hong, CJ
    NEUROLOGY, 2002, 58 (07) : A218 - A218
  • [7] Predicting Alzheimer's Disease with Interpretable Machine Learning
    Jia, Maoni
    Wu, Yafei
    Xiang, Chaoyi
    Fang, Ya
    DEMENTIA AND GERIATRIC COGNITIVE DISORDERS, 2023, 52 (04) : 249 - 257
  • [8] Predicting Conversion from Subjective Cognitive Decline to Mild Cognitive Impairment and Alzheimer's Disease Dementia Using Ensemble Machine Learning
    Dolcet-Negre, Marta M.
    Aguayo, Laura Imaz
    Garcia-De-Eulate, Reyes
    Marti-Andres, Gloria
    Fernandez-Matarrubia, Marta
    Dominguez, Pablo
    Fernandez-Seara, Maria A.
    Riverol, Mario
    JOURNAL OF ALZHEIMERS DISEASE, 2023, 93 (01) : 125 - 140
  • [9] Stacked Machine Learning Model for Predicting Alzheimer's Disease Based on Genetic Data
    Alatrany, Abbas Saad
    Hussain, Abir
    Jamila, Mustafina
    Al-Jumeiy, Dhiya
    2021 14TH INTERNATIONAL CONFERENCE ON DEVELOPMENTS IN ESYSTEMS ENGINEERING (DESE), 2021, : 594 - 598
  • [10] A Machine Learning Approach for Predicting Deterioration in Alzheimer's Disease
    Musto, Henry
    Stamate, Daniel
    Pu, Ida
    Stahl, Daniel
    20TH IEEE INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS (ICMLA 2021), 2021, : 1443 - 1448