Machine Learning Based Multimodal Neuroimaging Genomics Dementia Score for Predicting Future Conversion to Alzheimer's Disease

被引:9
|
作者
Mirabnahrazam, Ghazal [1 ]
Ma, Da [1 ,2 ]
Lee, Sieun [1 ,7 ]
Popuri, Karteek [1 ]
Lee, Hyunwoo [3 ]
Cao, Jiguo [4 ]
Wang, Lei [5 ]
Galvin, James E. [6 ]
Beg, Mirza Faisal [1 ]
机构
[1] Simon Fraser Univ, Sch Engn, Burnaby, BC, Canada
[2] Wake Forest Univ, Bowman Gray Sch Med, Winston Salem, NC USA
[3] Univ British Columbia, Dept Med, Div Neurol, Vancouver, BC, Canada
[4] Simon Fraser Univ, Dept Stat & Actuarial Sci, Burnaby, BC, Canada
[5] Ohio State Univ, Psychiat & Behav Hlth, Wexner Med Ctr, Columbus, OH USA
[6] Univ Miami, Miller Sch Med, Dept Neurol, Comprehens Ctr Brain Hlth, Miami, FL USA
[7] Univ Nottingham, Sch Med, Mental Hlth & Clin Neurosci, Nottingham, England
基金
美国国家卫生研究院; 加拿大健康研究院; 加拿大自然科学与工程研究理事会;
关键词
Alzheimer's disease; biomarker; early detection; machine learning; magnetic resonance imaging; risk scores; single nucleotide polymorphism; POLYMORPHISMS; SEGMENTATION; METAANALYSIS; BIOMARKERS; PHENOTYPES; PROTEINS; ONSET; LOCI; MRI;
D O I
10.3233/JAD-220021
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Background: The increasing availability of databases containing both magnetic resonance imaging (MRI) and genetic data allows researchers to utilize multimodal data to better understand the characteristics of dementia of Alzheimer's type (DAT). Objective: The goal of this study was to develop and analyze novel biomarkers that can help predict the development and progression of DAT. Methods: We used feature selection and ensemble learning classifier to develop an image/genotype-based DAT score that represents a subject's likelihood of developing DAT in the future. Three feature types were used: MRI only, genetic only, and combined multimodal data. We used a novel data stratification method to better represent different stages of DAT. Using a pre-defined 0.5 threshold on DAT scores, we predicted whether a subject would develop DAT in the future. Results: Our results on Alzheimer's Disease Neuroimaging Initiative (ADNI) database showed that dementia scores using genetic data could better predict future DAT progression for currently normal control subjects (Accuracy = 0.857) compared to MRI (Accuracy = 0.143), while MRI can better characterize subjects with stable mild cognitive impairment (Accuracy = 0.614) compared to genetics (Accuracy = 0.356). Combining MRI and genetic data showed improved classification performance in the remaining stratified groups. Conclusion: MRI and genetic data can contribute to DAT prediction in different ways. MRI data reflects anatomical changes in the brain, while genetic data can detect the risk of DAT progression prior to the symptomatic onset. Combining information from multimodal data appropriately can improve prediction performance.
引用
收藏
页码:1345 / 1365
页数:21
相关论文
共 50 条
  • [1] A multimodal machine learning model for predicting dementia conversion in Alzheimer's disease
    Lee, Min-Woo
    Kim, Hye Weon
    Choe, Yeong Sim
    Yang, Hyeon Sik
    Lee, Jiyeon
    Lee, Hyunji
    Yong, Jung Hyeon
    Kim, Donghyeon
    Lee, Minho
    Kang, Dong Woo
    Jeon, So Yeon
    Son, Sang Joon
    Lee, Young-Min
    Kim, Hyug-Gi
    Kim, Regina E. Y.
    Lim, Hyun Kook
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [2] A multimodal learning machine framework for Alzheimer's disease diagnosis based on neuropsychological and neuroimaging data
    Zhang, Meiwei
    Cui, Qiushi
    Lu, Yang
    Yu, Weihua
    Li, Wenyuan
    COMPUTERS & INDUSTRIAL ENGINEERING, 2024, 197
  • [3] Deep Learning with Neuroimaging and Genomics in Alzheimer's Disease
    Lin, Eugene
    Lin, Chieh-Hsin
    Lane, Hsien-Yuan
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2021, 22 (15)
  • [4] DEEP GENERATIVE TRANSFER LEARNING PREDICTS CONVERSION TO ALZHEIMER'S DISEASE FROM NEUROIMAGING GENOMICS DATA
    Dolci, G.
    Rahaman, M. A.
    Galazzo, I. Boscolo
    Cruciani, F.
    Abrol, A.
    Chen, J.
    Fu, Z.
    Duan, K.
    Menegaz, G.
    Calhoun, V. D.
    2023 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING WORKSHOPS, ICASSPW, 2023,
  • [5] Predicting Alzheimer's disease CSF core biomarkers: a multimodal Machine Learning approach
    Gaeta, Anna Michela
    Quijada-Lopez, Maria
    Barbe, Ferran
    Vaca, Rafaela
    Pujol, Montse
    Minguez, Olga
    Sanchez-de-la-Torre, Manuel
    Munoz-Barrutia, Arrate
    Pinol-Ripoll, Gerard
    FRONTIERS IN AGING NEUROSCIENCE, 2024, 16
  • [6] Machine Learning for Alzheimer's Disease Detection Based on Neuroimaging techniques: A Review
    Gharaibeh, Maha
    Elhies, Mwaffaq
    Almahmoud, Mothanna
    Abualigah, Sayel
    Elayan, Omar
    2022 13TH INTERNATIONAL CONFERENCE ON INFORMATION AND COMMUNICATION SYSTEMS (ICICS), 2022, : 426 - 431
  • [7] Predicting survival in glioblastoma with multimodal neuroimaging and machine learning
    Patrick H. Luckett
    Michael Olufawo
    Bidhan Lamichhane
    Ki Yun Park
    Donna Dierker
    Gabriel Trevino Verastegui
    Peter Yang
    Albert H. Kim
    Milan G. Chheda
    Abraham Z. Snyder
    Joshua S. Shimony
    Eric C. Leuthardt
    Journal of Neuro-Oncology, 2023, 164 (2) : 309 - 320
  • [8] Predicting survival in glioblastoma with multimodal neuroimaging and machine learning
    Luckett, Patrick H.
    Olufawo, Michael
    Lamichhane, Bidhan
    Park, Ki Yun
    Dierker, Donna
    Verastegui, Gabriel Trevino
    Yang, Peter
    Kim, Albert H.
    Chheda, Milan G.
    Snyder, Abraham Z.
    Shimony, Joshua S.
    Leuthardt, Eric C.
    JOURNAL OF NEURO-ONCOLOGY, 2023, 164 (02) : 309 - 320
  • [9] Multimodal Neuroimaging Feature Learning for Multiclass Diagnosis of Alzheimer's Disease
    Liu, Siqi
    Liu, Sidong
    Cai, Weidong
    Che, Hangyu
    Pujol, Sonia
    Kikinis, Ron
    Feng, Dagan
    Fulham, Michael J.
    IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2015, 62 (04) : 1132 - 1140
  • [10] Robust Alzheimer's disease Classification Based on Multimodal Neuroimaging
    Akhila, D. B.
    Shobhana, S.
    Fred, A. Lenin
    Kumar, S. N.
    PROCEEDINGS OF 2ND IEEE INTERNATIONAL CONFERENCE ON ENGINEERING & TECHNOLOGY ICETECH-2016, 2016, : 748 - 752