Predicting Alzheimer's disease progression using multi-modal deep learning approach

被引:218
|
作者
Lee, Garam [1 ,2 ]
Nho, Kwangsik [3 ,4 ]
Kang, Byungkon [1 ]
Sohn, Kyung-Ah [1 ]
Kim, Dokyoon [2 ,5 ]
Weiner, Michael W. [6 ]
Aisen, Paul [7 ]
Petersen, Ronald [8 ]
Jack, Clifford R., Jr. [8 ]
Jagust, William [9 ]
Trojanowki, John Q. [10 ]
Toga, Arthur W. [11 ]
Beckett, Laurel [12 ]
Green, Robert C. [13 ]
Saykin, Andrew J. [10 ]
Morris, John [15 ]
Shaw, Leslie M. [10 ]
Khachaturian, Zaven [16 ]
Sorensen, Greg [17 ]
Carrillo, Maria [18 ]
Kuller, Lew [19 ]
Raichle, Marc [15 ]
Paul, Steven [20 ]
Davies, Peter [21 ]
Fillit, Howard [22 ]
Hefti, Franz [23 ]
Holtzman, Davie [15 ]
Mesulam, M. Marcel [24 ]
Potter, William [25 ]
Snyder, Peter [26 ]
Montine, Tom [27 ]
Thomas, Ronald G. [7 ]
Donohue, Michael [7 ]
Walter, Sarah [7 ]
Sather, Tamie [7 ]
Jiminez, Gus [7 ]
Balasubramanian, Archana B. [7 ]
Mason, Jennifer [7 ]
Sim, Iris [7 ]
Harvey, Danielle [12 ]
Bernstein, Matthew [8 ]
Fox, Nick [28 ]
Thompson, Paul [29 ]
Schuff, Norbert [6 ]
DeCArli, Charles [12 ]
Borowski, Bret [8 ]
Gunter, Jeff [8 ]
Senjem, Matt [8 ]
Vemuri, Prashanthi [8 ]
Jones, David [8 ]
机构
[1] Ajou Univ, Dept Software & Comp Engn, Suwon, South Korea
[2] Geisinger, Biomed & Translat Informat Inst, Danville, PA 17822 USA
[3] Indiana Univ, Sch Med, Ctr Computat Biol & Bioinformat, Indianapolis, IN 46204 USA
[4] Indiana Univ, Sch Med, Dept Radiol & Imaging Sci, Ctr Neuroimaging, Indianapolis, IN 46204 USA
[5] Penn State Univ, Huck Inst Life Sci, University Pk, PA 16802 USA
[6] UC San Francisco, San Francisco, CA 94107 USA
[7] Univ Calif San Diego, La Jolla, CA 92093 USA
[8] Mayo Clin, Rochester, MN USA
[9] Univ Calif Berkeley, San Francisco, CA USA
[10] Univ Penn, Philadelphia, PA 19104 USA
[11] USC, Los Angeles, CA 90032 USA
[12] Univ Calif Davis, Sacramento, CA USA
[13] Harvard Med Sch, Brigham & Womens Hosp, Boston, MA 02215 USA
[14] Indiana Univ, Bloomington, IN 47405 USA
[15] Washington Univ, St Louis, MO 63110 USA
[16] Prevent Alzheimers Dis 2020, Rockville, MD 20850 USA
[17] Siemens, Erlangen, Germany
[18] Alzheimers Assoc, Chicago, IL 60631 USA
[19] Univ Pittsburgh, Pittsburgh, PA 15213 USA
[20] Cornell Univ, Ithaca, NY 14853 USA
[21] Yeshiva Univ, Albert Einstein Coll Med, Bronx, NY 10461 USA
[22] AD Drug Discovery Fdn, New York, NY 10019 USA
[23] Acumen Pharmaceut, Livermore, CA 94551 USA
[24] Northwestern Univ, Chicago, IL 60611 USA
[25] NIMH, Bethesda, MD 20892 USA
[26] Brown Univ, Providence, RI 20912 USA
[27] Univ Washington, Seattle, WA 98195 USA
[28] Univ London, London, England
[29] Univ Calif Los Angeles, Torrance, CA 90509 USA
[30] Univ Michigan, Ann Arbor, MI 48109 USA
[31] Univ Utah, Salt Lake City, UT 84112 USA
[32] Banner Alzheimers Inst, Phoenix, AZ 85006 USA
[33] UUC Irvine, Orange, CA 92868 USA
[34] Johns Hopkins Univ, Baltimore, MD 21205 USA
[35] Richard Frank Consulting, Baltimore, MD USA
[36] NIA, Baltimore, MD 21224 USA
[37] Oregon Hlth & Sci Univ, Portland, OR 97239 USA
[38] Univ Alabama Birmingham, Birmingham, AL USA
[39] Mt Sinai Sch Med, New York, NY USA
[40] Rush Univ, Med Ctr, Chicago, IL 60612 USA
[41] Baylor Coll Med, Houston, TX 77030 USA
[42] Wien Ctr, Miami Beach, FL 33140 USA
[43] Columbia Univ, Med Ctr, New York, NY USA
[44] NYU, New York, NY USA
[45] Univ Texas Southwestern, Med Sch, Galveston, TX 77555 USA
[46] Duke Univ, Med Ctr, Durham, NC USA
[47] Emory Univ, Atlanta, GA 30307 USA
[48] Univ Kansas, Med Ctr, Kansas City, KS 66103 USA
[49] Univ Kentucky, Lexington, KY USA
[50] Mayo Clin, Jacksonville, FL USA
基金
新加坡国家研究基金会; 美国国家卫生研究院; 加拿大健康研究院;
关键词
MILD COGNITIVE IMPAIRMENT; ASSOCIATION WORKGROUPS; DIAGNOSTIC GUIDELINES; NATIONAL INSTITUTE; RECOMMENDATIONS; MCI; PHENOTYPES; CONVERSION; MRI;
D O I
10.1038/s41598-018-37769-z
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Alzheimer's disease (AD) is a progressive neurodegenerative condition marked by a decline in cognitive functions with no validated disease modifying treatment. It is critical for timely treatment to detect AD in its earlier stage before clinical manifestation. Mild cognitive impairment (MCI) is an intermediate stage between cognitively normal older adults and AD. To predict conversion from MCI to probable AD, we applied a deep learning approach, multimodal recurrent neural network. We developed an integrative framework that combines not only cross-sectional neuroimaging biomarkers at baseline but also longitudinal cerebrospinal fluid (CSF) and cognitive performance biomarkers obtained from the Alzheimer's Disease Neuroimaging Initiative cohort (ADNI). The proposed framework integrated longitudinal multi-domain data. Our results showed that 1) our prediction model for MCI conversion to AD yielded up to 75% accuracy (area under the curve (AUC) = 0.83) when using only single modality of data separately; and 2) our prediction model achieved the best performance with 81% accuracy (AUC = 0.86) when incorporating longitudinal multi-domain data. A multi-modal deep learning approach has potential to identify persons at risk of developing AD who might benefit most from a clinical trial or as a stratification approach within clinical trials.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Predicting Alzheimer’s disease progression using multi-modal deep learning approach
    Garam Lee
    Kwangsik Nho
    Byungkon Kang
    Kyung-Ah Sohn
    Dokyoon Kim
    [J]. Scientific Reports, 9
  • [2] Author Correction: Predicting Alzheimer’s disease progression using multi-modal deep learning approach
    Garam Lee
    Kwangsik Nho
    Byungkon Kang
    Kyung-Ah Sohn
    Dokyoon Kim
    [J]. Scientific Reports, 13
  • [3] Predicting Alzheimer's disease progression using multi-modal deep learning approach (vol 9, 1952, 2019)
    Lee, Garam
    Nho, Kwangsik
    Kang, Byungkon
    Sohn, Kyung-Ah
    Kim, Dokyoon
    Weiner, Michael W.
    [J]. SCIENTIFIC REPORTS, 2023, 13 (01)
  • [4] Multi-modal deep learning for predicting progression of Alzheimer's disease using bi-linear shake fusion
    Goto, Tsubasa
    Wang, Caihua
    Li, Yuanzhong
    Tsuboshita, Yukihiro
    [J]. MEDICAL IMAGING 2020: COMPUTER-AIDED DIAGNOSIS, 2020, 11314
  • [5] Multi-Modal Deep Learning Models for Alzheimer's Disease Prediction Using MRI and EHR
    Prabhu, Sathvik S.
    Berkebile, John A.
    Rajagopalan, Neha
    Yao, Renjie
    Shi, Wenqi
    Giuste, Felipe
    Zhong, Yishan
    Sun, Jimin
    Wang, May D.
    [J]. 2022 IEEE 22ND INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOENGINEERING (BIBE 2022), 2022, : 168 - 173
  • [6] Multi-modal deep learning model for auxiliary diagnosis of Alzheimer's disease
    Zhang, Fan
    Li, Zhenzhen
    Zhang, Boyan
    Dua, Haishun
    Wang, Binjie
    Zhang, Xinhong
    [J]. NEUROCOMPUTING, 2019, 361 : 185 - 195
  • [7] A Multi-Modal Deep Learning Approach to the Early Prediction of Mild Cognitive Impairment Conversion to Alzheimer's Disease
    Rana, Sijan S.
    Ma, Xinhui
    Pang, Wei
    Wolverson, Emma
    [J]. 2020 IEEE/ACM INTERNATIONAL CONFERENCE ON BIG DATA COMPUTING, APPLICATIONS AND TECHNOLOGIES (BDCAT 2020), 2020, : 9 - 18
  • [8] A Multi-modal Deep Learning Approach for Predicting Dhaka Stock Exchange
    Khan, Md. Nabil Rahman
    Al Tanim, Omor
    Salsabil, Most. Sadia
    Reza, S. M. Raiyan
    Hasib, Khan Md
    Alam, Mohammad Shafiul
    [J]. 2023 IEEE 13TH ANNUAL COMPUTING AND COMMUNICATION WORKSHOP AND CONFERENCE, CCWC, 2023, : 879 - 885
  • [9] An Improved Multi-Modal based Machine Learning Approach for the Prognosis of Alzheimer?s disease
    Khan, Afreen
    Zubair, Swaleha
    [J]. JOURNAL OF KING SAUD UNIVERSITY-COMPUTER AND INFORMATION SCIENCES, 2022, 34 (06) : 2688 - 2706
  • [10] Machine learning on longitudinal multi-modal data enables the understanding and prognosis of Alzheimer's disease progression
    Zhang, Suixia
    Yuan, Jing
    Sun, Yu
    Wu, Fei
    Liu, Ziyue
    Zhai, Feifei
    Zhang, Yaoyun
    Somekh, Judith
    Peleg, Mor
    Zhu, Yi-Cheng
    Huang, Zhengxing
    [J]. ISCIENCE, 2024, 27 (07)