Machine learning on longitudinal multi-modal data enables the understanding and prognosis of Alzheimer's disease progression

被引:0
|
作者
Zhang, Suixia [1 ,5 ]
Yuan, Jing [2 ]
Sun, Yu [1 ]
Wu, Fei [1 ]
Liu, Ziyue [2 ]
Zhai, Feifei [2 ]
Zhang, Yaoyun [3 ]
Somekh, Judith [4 ]
Peleg, Mor [4 ]
Zhu, Yi-Cheng [2 ]
Huang, Zhengxing [1 ]
机构
[1] Zhejiang Univ, 866 Yuhangtang Rd, Hangzhou 310058, Peoples R China
[2] Chinese Acad Med Sci, Peking Union Med Coll Hosp, Peking Union Med Coll, Dept Neurol, Beijing 100730, Peoples R China
[3] DAMO Acad, Alibaba Grp, 969 Wenyixi Rd, Hangzhou 310058, Peoples R China
[4] Univ Haifa, Dept Informat Syst, IL-3303220 Haifa, Israel
[5] Xinjiang Med Univ, Dept Med Engn & Technol, Urumqi 830017, Peoples R China
基金
美国国家卫生研究院; 加拿大健康研究院;
关键词
HIDDEN MARKOV MODEL; INDIVIDUALS; SUBTYPES; AUTOPSY; ATROPHY;
D O I
10.1016/j.isci.2024.110263
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Alzheimer's disease (AD) is a complex pathophysiological disease. Allowing for heterogeneity, not only disease manifestations but also in different progression patterns, is critical for developing effective ease models that can be used in clinical and research settings. We introduce a machine learning for identifying underlying patterns in Alzheimer's disease (AD) trajectory using longitudinal multi -modal data from the ADNI cohort and the AIBL cohort. Ten biologically and clinically meaningful disease -related states were identified from data, which constitute three non -overlapping stages (i.e., neocortical atrophy [NCA], medial temporal atrophy [MTA], and whole brain atrophy [WBA]) and two distinct disease progression patterns (i.e., NCA -> WBA and MTA -> WBA). The index of disease -related states provided a remarkable performance in predicting the time to conversion to AD dementia (C -Index: 0.923 +/- 0.007). model shows potential for promoting the understanding of heterogeneous disease progression and predicting the conversion time to AD dementia.
引用
收藏
页数:20
相关论文
共 50 条
  • [1] An Improved Multi-Modal based Machine Learning Approach for the Prognosis of Alzheimer?s disease
    Khan, Afreen
    Zubair, Swaleha
    [J]. JOURNAL OF KING SAUD UNIVERSITY-COMPUTER AND INFORMATION SCIENCES, 2022, 34 (06) : 2688 - 2706
  • [2] Multi-modal sequence learning for Alzheimer's disease progression prediction with incomplete variable-length longitudinal data
    Xu, Lei
    Wu, Hui
    He, Chunming
    Wang, Jun
    Zhang, Changqing
    Nie, Feiping
    Chen, Lei
    [J]. MEDICAL IMAGE ANALYSIS, 2022, 82
  • [3] Quantitative Longitudinal Predictions of Alzheimer's Disease by Multi-Modal Predictive Learning
    Prakash, Mithilesh
    Abdelaziz, Mahmoud
    Zhang, Linda
    Strange, Bryan A.
    Tohka, Jussi
    [J]. JOURNAL OF ALZHEIMERS DISEASE, 2021, 79 (04) : 1533 - 1546
  • [4] Longitudinal and Multi-Modal Data Learning for Parkinson's Disease Diagnosis
    Huang, Zhongwei
    Lei, Haijun
    Zhao, Yujia
    Zhou, Feng
    Yan, Jin
    Elazab, Ahmed
    Lei, Baiying
    [J]. 2018 IEEE 15TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI 2018), 2018, : 1411 - 1414
  • [5] A Multi-modal Data Platform for Diagnosis and Prediction of Alzheimer’s Disease Using Machine Learning Methods
    Zhen Pang
    Xiang Wang
    Xulong Wang
    Jun Qi
    Zhong Zhao
    Yuan Gao
    Yun Yang
    Po Yang
    [J]. Mobile Networks and Applications, 2021, 26 : 2341 - 2352
  • [6] A Multi-modal Data Platform for Diagnosis and Prediction of Alzheimer's Disease Using Machine Learning Methods
    Pang, Zhen
    Wang, Xiang
    Wang, Xulong
    Qi, Jun
    Zhao, Zhong
    Gao, Yuan
    Yang, Yun
    Yang, Po
    [J]. MOBILE NETWORKS & APPLICATIONS, 2021, 26 (06): : 2341 - 2352
  • [7] Predicting Alzheimer’s disease progression using multi-modal deep learning approach
    Garam Lee
    Kwangsik Nho
    Byungkon Kang
    Kyung-Ah Sohn
    Dokyoon Kim
    [J]. Scientific Reports, 9
  • [8] Predicting Alzheimer's disease progression using multi-modal deep learning approach
    Lee, Garam
    Nho, Kwangsik
    Kang, Byungkon
    Sohn, Kyung-Ah
    Kim, Dokyoon
    Weiner, Michael W.
    Aisen, Paul
    Petersen, Ronald
    Jack, Clifford R., Jr.
    Jagust, William
    Trojanowki, John Q.
    Toga, Arthur W.
    Beckett, Laurel
    Green, Robert C.
    Saykin, Andrew J.
    Morris, John
    Shaw, Leslie M.
    Khachaturian, Zaven
    Sorensen, Greg
    Carrillo, Maria
    Kuller, Lew
    Raichle, Marc
    Paul, Steven
    Davies, Peter
    Fillit, Howard
    Hefti, Franz
    Holtzman, Davie
    Mesulam, M. Marcel
    Potter, William
    Snyder, Peter
    Montine, Tom
    Thomas, Ronald G.
    Donohue, Michael
    Walter, Sarah
    Sather, Tamie
    Jiminez, Gus
    Balasubramanian, Archana B.
    Mason, Jennifer
    Sim, Iris
    Harvey, Danielle
    Bernstein, Matthew
    Fox, Nick
    Thompson, Paul
    Schuff, Norbert
    DeCArli, Charles
    Borowski, Bret
    Gunter, Jeff
    Senjem, Matt
    Vemuri, Prashanthi
    Jones, David
    [J]. SCIENTIFIC REPORTS, 2019, 9 (1)
  • [9] Author Correction: Predicting Alzheimer’s disease progression using multi-modal deep learning approach
    Garam Lee
    Kwangsik Nho
    Byungkon Kang
    Kyung-Ah Sohn
    Dokyoon Kim
    [J]. Scientific Reports, 13
  • [10] Incomplete multi-modal representation learning for Alzheimer's disease diagnosis
    Liu, Yanbei
    Fan, Lianxi
    Zhang, Changqing
    Zhou, Tao
    Xiao, Zhitao
    Geng, Lei
    Shen, Dinggang
    [J]. MEDICAL IMAGE ANALYSIS, 2021, 69