Chip-Scale Plasmonic Sum Frequency Generation

被引:4
|
作者
Bai, Songang [1 ]
Fang, Ming [2 ,3 ]
Sha, Wei E. I. [3 ]
Qu, Yurui [1 ]
Jin, Zhongwei [4 ]
Tian, Jingyi [1 ]
Du, Kaikai [1 ]
Yu, Shaoliang [1 ]
Qiu, Cheng-Wei [4 ]
Qiu, Min [1 ]
Li, Qiang [1 ]
机构
[1] Zhejiang Univ, Coll Opt Sci & Engn, State Key Lab Modern Opt Instrumentat, Hangzhou 310027, Zhejiang, Peoples R China
[2] Anhui Univ, Minist Educ, Key Lab Intelligent Comp & Signal Proc, Hefei 230039, Peoples R China
[3] Univ Hong Kong, Dept Elect & Elect Engn, Pokfulam, Hong Kong, Peoples R China
[4] Natl Univ Singapore, Dept Elect & Comp Engn, Singapore 117583, Singapore
来源
IEEE PHOTONICS JOURNAL | 2017年 / 9卷 / 03期
基金
中国国家自然科学基金;
关键词
Plasmonics; metamaterials and nonlinear optics; 3RD HARMONIC-GENERATION; 2ND-HARMONIC GENERATION; VIBRATIONAL SPECTROSCOPY; 3RD-HARMONIC GENERATION; GOLD NANOPARTICLES; FANO RESONANCES; GAP-ANTENNAS; NANOSTRUCTURES; ENHANCEMENT; METASURFACES;
D O I
10.1109/JPHOT.2017.2705061
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Plasmonics provides a promising candidate for nonlinear optical interactions because of its ability to enable extreme light concentration at the nanoscale. We demonstrate on-chip plasmonic sum frequency generation (SFG) with a metal-dielectric-metal nanostructure. The two cross-polarized pumps (800 and 1500 nm) are designed to match the two resonances of this plasmonic nanostructure to make the most of the electric field enhancement and spatial overlapping of the modes. Since these two resonances are predominantly determined by the sizes of the top metallic nanostructures in the same direction, the SFG (521 nm) can be independently controlled by each pump via changing these sizes. This study exerts the full strength of plasmonic resonance induced field enhancement, thereby paving a way toward using nanoplasmonics for future nonlinear nanophotonics applications, such as optical information processing, imaging, and spectroscopy.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] Chip-scale Terahertz Systems
    Sengupta, Kaushik
    TERAHERTZ EMITTERS, RECEIVERS, AND APPLICATIONS X, 2019, 11124
  • [42] Chip-scale atomic devices
    Kitching, John
    APPLIED PHYSICS REVIEWS, 2018, 5 (03):
  • [43] A Chip-Scale Silicon Cavity Optomechanical Accelerometer With Extended Frequency Range
    Li, Zhe
    Li, Xinwei
    Chen, Dingwei
    Zhang, Senyu
    Xian, Chengwei
    Kuang, Pengju
    Wang, Yifan
    Chen, Kai
    Qiu, Gen
    Deng, Guangwei
    Huang, Yongjun
    IEEE SENSORS JOURNAL, 2024, 24 (20) : 31849 - 31859
  • [44] Design of Plasmonic Yagi-Uda Nanoantennas for Chip-Scale Optical Wireless Communications
    Damasceno, Gabriel H. B.
    Carvalho, William O. F.
    Mejia-Salazar, Jorge Ricardo
    SENSORS, 2022, 22 (19)
  • [45] Ultrafast parallel random number generation with a chip-scale semiconductor laser
    Kim, Kyungduk
    Bittner, Stefan
    Zeng, Yongquan
    Guazzotti, Stefano
    Hess, Ortwin
    Wang, Qi Jie
    Cao, Hui
    2021 ANNUAL CONFERENCE OF THE IEEE PHOTONICS SOCIETY (IPC), 2021,
  • [46] Sum-Frequency Generation Spectroscopy of Plasmonic Nanomaterials: A Review
    Humbert, Christophe
    Noblet, Thomas
    Dalstein, Laetitia
    Busson, Bertrand
    Barbillon, Gregory
    MATERIALS, 2019, 12 (05):
  • [47] Enhanced sum frequency generation for ultrasensitive characterization of plasmonic modes
    Gao, Min
    He, Yuhan
    Chen, Ying
    Shih, Tien-Mo
    Yang, Weimin
    Chen, Huanyang
    Yang, Zhilin
    Wang, Zhaohui
    NANOPHOTONICS, 2020, 9 (04) : 815 - 822
  • [48] A manufacturable chip-scale atomic clock
    Youngner, D. W.
    Lust, L. M.
    Carlson, D. R.
    Lu, S. T.
    Forner, L. J.
    Chanhvongsak, H. M.
    Stark, T. D.
    TRANSDUCERS '07 & EUROSENSORS XXI, DIGEST OF TECHNICAL PAPERS, VOLS 1 AND 2, 2007,
  • [49] Highly-coherent second-harmonic generation in a chip-scale source
    Liu, Xuanyi
    Fu, Hongyan
    LIGHT-SCIENCE & APPLICATIONS, 2024, 13 (01)
  • [50] Highly-coherent second-harmonic generation in a chip-scale source
    Xuanyi Liu
    Hongyan Fu
    Light: Science & Applications, 13