Chip-Scale Plasmonic Sum Frequency Generation

被引:4
|
作者
Bai, Songang [1 ]
Fang, Ming [2 ,3 ]
Sha, Wei E. I. [3 ]
Qu, Yurui [1 ]
Jin, Zhongwei [4 ]
Tian, Jingyi [1 ]
Du, Kaikai [1 ]
Yu, Shaoliang [1 ]
Qiu, Cheng-Wei [4 ]
Qiu, Min [1 ]
Li, Qiang [1 ]
机构
[1] Zhejiang Univ, Coll Opt Sci & Engn, State Key Lab Modern Opt Instrumentat, Hangzhou 310027, Zhejiang, Peoples R China
[2] Anhui Univ, Minist Educ, Key Lab Intelligent Comp & Signal Proc, Hefei 230039, Peoples R China
[3] Univ Hong Kong, Dept Elect & Elect Engn, Pokfulam, Hong Kong, Peoples R China
[4] Natl Univ Singapore, Dept Elect & Comp Engn, Singapore 117583, Singapore
来源
IEEE PHOTONICS JOURNAL | 2017年 / 9卷 / 03期
基金
中国国家自然科学基金;
关键词
Plasmonics; metamaterials and nonlinear optics; 3RD HARMONIC-GENERATION; 2ND-HARMONIC GENERATION; VIBRATIONAL SPECTROSCOPY; 3RD-HARMONIC GENERATION; GOLD NANOPARTICLES; FANO RESONANCES; GAP-ANTENNAS; NANOSTRUCTURES; ENHANCEMENT; METASURFACES;
D O I
10.1109/JPHOT.2017.2705061
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Plasmonics provides a promising candidate for nonlinear optical interactions because of its ability to enable extreme light concentration at the nanoscale. We demonstrate on-chip plasmonic sum frequency generation (SFG) with a metal-dielectric-metal nanostructure. The two cross-polarized pumps (800 and 1500 nm) are designed to match the two resonances of this plasmonic nanostructure to make the most of the electric field enhancement and spatial overlapping of the modes. Since these two resonances are predominantly determined by the sizes of the top metallic nanostructures in the same direction, the SFG (521 nm) can be independently controlled by each pump via changing these sizes. This study exerts the full strength of plasmonic resonance induced field enhancement, thereby paving a way toward using nanoplasmonics for future nonlinear nanophotonics applications, such as optical information processing, imaging, and spectroscopy.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Chip-scale packaging primer
    Malatesta, James
    Bauer, Ron
    Printed Circuit Design, 2000, 17 (03):
  • [22] Assembly chip-scale packaging
    Young, James L.
    Advanced Packaging, 1996, 5 (01):
  • [23] Chip-scale GaN integration
    Li, K. H.
    Fu, W. Y.
    Choi, H. W.
    PROGRESS IN QUANTUM ELECTRONICS, 2020, 70
  • [24] Chip-scale atomic magnetometer
    Schwindt, PDD
    Knappe, S
    Shah, V
    Hollberg, L
    Kitching, J
    Liew, LA
    Moreland, J
    APPLIED PHYSICS LETTERS, 2004, 85 (26) : 6409 - 6411
  • [25] Flip chip micropallet technology - A chip-scale chip
    Goetz, M
    1998 INTERNATIONAL CONFERENCE ON MULTICHIP MODULES AND HIGH DENSITY PACKAGING, PROCEEDINGS, 1998, : 526 - 530
  • [26] Stacking chip-scale packages
    Goodwin, P
    SOLID STATE TECHNOLOGY, 2005, 48 (06) : 26 - +
  • [27] A Chip-Scale Particle Accelerator
    Calamia, Joseph
    IEEE SPECTRUM, 2011, 48 (03) : 14 - 14
  • [28] Terahertz Chip-scale Systems
    Sengupta, Kaushik
    Saeidi, Hooman
    Lu, Xuyang
    Venkatesh, Suresh
    Wu, Xue
    2020 EUROPEAN CONFERENCE ON OPTICAL COMMUNICATIONS (ECOC), 2020,
  • [29] Chip-scale microscopy imaging
    Zheng, Guoan
    JOURNAL OF BIOPHOTONICS, 2012, 5 (8-9) : 639 - 649
  • [30] Chip-Scale Molecular Clock
    Wang, Cheng
    Yi, Xiang
    Mawdsley, James
    Kim, Mina
    Hu, Zhi
    Zhang, Yaqing
    Perkins, Bradford
    Han, Ruonan
    IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2019, 54 (04) : 914 - 926