Learning spatiotemporal chaos using next-generation reservoir computing

被引:22
|
作者
Barbosa, Wendson A. S. [1 ]
Gauthier, Daniel J. [1 ,2 ]
机构
[1] Ohio State Univ, Dept Phys, 191 W Woodruff Ave, Columbus, OH 43210 USA
[2] ResCon Technol LLC, POB 21229, Columbus, OH 43221 USA
关键词
PREDICTION;
D O I
10.1063/5.0098707
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Forecasting the behavior of high-dimensional dynamical systems using machine learning requires efficient methods to learn the underlying physical model. We demonstrate spatiotemporal chaos prediction using a machine learning architecture that, when combined with a next-generation reservoir computer, displays state-of-the-art performance with a computational time 10(3)-10(4) times faster for training process and training data set similar to 10(2) times smaller than other machine learning algorithms. We also take advantage of the translational symmetry of the model to further reduce the computational cost and training data, each by a factor of similar to 10. Published under an exclusive license by AIP Publishing.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Machine learning for next-generation in healthcare
    Lorenc, Andzelika
    Mendes, Barbara B.
    Conniot, Joao
    Sousa, Diana P.
    Conde, Joao
    Rodrigues, Tiago
    MATTER, 2021, 4 (10) : 3078 - 3080
  • [32] Detection of Chaos Using Reservoir Computing Approach
    Ismail, Ali Rida
    Jovanovic, Slavisa
    Petit-Watelot, Sebastien
    Rabah, Hassan
    IEEE ACCESS, 2022, 10 : 52686 - 52699
  • [33] Machine learning for next-generation thermoelectrics
    Saglik, Kivanc
    Srinivasan, Siddharth
    Victor, Varsha
    Wang, Xizu
    Zhang, Wei
    Yan, Qingyu
    MATERIALS TODAY ENERGY, 2024, 46
  • [34] Noise resistance of next-generation reservoir computing: a comparative study with high-order correlation computation
    Shengyu Liu
    Jinghua Xiao
    Zixiang Yan
    Jian Gao
    Nonlinear Dynamics, 2023, 111 : 14295 - 14308
  • [35] Next Generation Classroom Learning Using Mobile Cloud Computing
    Lakshmi, Shalini A. J.
    Vijayalakshmi, M.
    2017 SECOND INTERNATIONAL CONFERENCE ON RECENT TRENDS AND CHALLENGES IN COMPUTATIONAL MODELS (ICRTCCM), 2017, : 1 - 6
  • [36] Noise resistance of next-generation reservoir computing: a comparative study with high-order correlation computation
    Liu, Shengyu
    Xiao, Jinghua
    Yan, Zixiang
    Gao, Jian
    NONLINEAR DYNAMICS, 2023, 111 (15) : 14295 - 14308
  • [37] Next Generation Automated Reservoir Computing for Cyber Defense
    Demertzis, Konstantinos
    Iliadis, Lazaros
    ARTIFICIAL INTELLIGENCE APPLICATIONS AND INNOVATIONS, AIAI 2023, PT II, 2023, 676 : 16 - 27
  • [38] Next-Generation Cloud Computing: Requirements, Challenges, and Visions
    Tosic, Vladimir
    2012 IEEE 16TH INTERNATIONAL ENTERPRISE DISTRIBUTED OBJECT COMPUTING CONFERENCE (EDOC), 2012, : XXI - XXI
  • [39] OPTICAL COMPUTING - NEXT-GENERATION OPTOELECTRONIC PROCESSOR EMERGES
    BAINS, S
    LASER FOCUS WORLD, 1992, 28 (12): : 15 - 16
  • [40] Radio Computing Power in the Next-Generation NetworksChallenges and Opportunities
    Wei, Hao
    Gao, Dixiang
    Xia, Nian
    Liu, Xiqing
    Wang, Dong
    Yuan, Renzhi
    Peng, Mugen
    IEEE NETWORK, 2025, 39 (01): : 313 - 323