Learning spatiotemporal chaos using next-generation reservoir computing

被引:22
|
作者
Barbosa, Wendson A. S. [1 ]
Gauthier, Daniel J. [1 ,2 ]
机构
[1] Ohio State Univ, Dept Phys, 191 W Woodruff Ave, Columbus, OH 43210 USA
[2] ResCon Technol LLC, POB 21229, Columbus, OH 43221 USA
关键词
PREDICTION;
D O I
10.1063/5.0098707
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Forecasting the behavior of high-dimensional dynamical systems using machine learning requires efficient methods to learn the underlying physical model. We demonstrate spatiotemporal chaos prediction using a machine learning architecture that, when combined with a next-generation reservoir computer, displays state-of-the-art performance with a computational time 10(3)-10(4) times faster for training process and training data set similar to 10(2) times smaller than other machine learning algorithms. We also take advantage of the translational symmetry of the model to further reduce the computational cost and training data, each by a factor of similar to 10. Published under an exclusive license by AIP Publishing.
引用
收藏
页数:11
相关论文
共 50 条
  • [11] Next-Generation Computing Paradigms
    Murugesan, San
    Colwell, Bob
    COMPUTER, 2016, 49 (09) : 14 - 20
  • [12] Computing for the Next-Generation Automobile
    Aoyama, Mikio
    COMPUTER, 2012, 45 (06) : 32 - 37
  • [13] NEXT-GENERATION COMPUTING - RESPONSE
    KAHN, RE
    IEEE SPECTRUM, 1984, 21 (05) : 10 - 10
  • [14] Controlling dynamical systems to complex target states using machine learning: next-generation vs. classical reservoir computing
    Haluszczynski, Alexander
    Koeglmayr, Daniel
    Raeth, Christoph
    2023 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, IJCNN, 2023,
  • [15] NEXT-GENERATION MOBILE COMPUTING INTRODUCTION
    Edmondson, James
    Anderson, William
    Gray, Jeff
    Loyall, Joseph P.
    Schmid, Klaus
    White, Jules
    IEEE SOFTWARE, 2014, 31 (02) : 44 - 47
  • [17] Optical Device Technology for Next-generation Computing Using Light
    Okada A.
    Hashimoto T.
    NTT Technical Review, 2022, 20 (08): : 42 - 46
  • [18] Application of next-generation reservoir computing for predicting chaotic systems from partial observations
    Ratas, Irmantas
    Pyragas, Kestutis
    PHYSICAL REVIEW E, 2024, 109 (06)
  • [19] Hybridizing traditional and next-generation reservoir computing to accurately and efficiently forecast dynamical systems
    Chepuri, R.
    Amzalag, D.
    Antonsen, T. M.
    Girvan, M.
    CHAOS, 2024, 34 (06)
  • [20] Synchronization of spatiotemporal chaos and reservoir computing via scalar signals
    Chen, Xiaolu
    Weng, Tongfeng
    Yang, Huijie
    CHAOS SOLITONS & FRACTALS, 2023, 169