Learning spatiotemporal chaos using next-generation reservoir computing

被引:22
|
作者
Barbosa, Wendson A. S. [1 ]
Gauthier, Daniel J. [1 ,2 ]
机构
[1] Ohio State Univ, Dept Phys, 191 W Woodruff Ave, Columbus, OH 43210 USA
[2] ResCon Technol LLC, POB 21229, Columbus, OH 43221 USA
关键词
PREDICTION;
D O I
10.1063/5.0098707
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Forecasting the behavior of high-dimensional dynamical systems using machine learning requires efficient methods to learn the underlying physical model. We demonstrate spatiotemporal chaos prediction using a machine learning architecture that, when combined with a next-generation reservoir computer, displays state-of-the-art performance with a computational time 10(3)-10(4) times faster for training process and training data set similar to 10(2) times smaller than other machine learning algorithms. We also take advantage of the translational symmetry of the model to further reduce the computational cost and training data, each by a factor of similar to 10. Published under an exclusive license by AIP Publishing.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] A high efficient next generation reservoir computing to predict and generate chaos with application for secure communication
    Jin, Leisheng
    Liu, Zhuo
    Guan, Ai
    Wang, Zhen
    Xue, Rui
    Li, Lijie
    IET COMMUNICATIONS, 2023, 17 (04) : 489 - 496
  • [22] Synchronizing chaos using reservoir computing
    Nazerian, Amirhossein
    Nathe, Chad
    Hart, Joseph D.
    Sorrentino, Francesco
    CHAOS, 2023, 33 (10)
  • [23] Next-generation reservoir computing water quality prediction model based on the whale optimization algorithm
    Zhou, Junyu
    Pei, Lijun
    Zheng, Zhiwei
    INTERNATIONAL JOURNAL OF DYNAMICS AND CONTROL, 2025, 13 (04)
  • [24] Neuromorphic Technologies for Next-Generation Cognitive Computing
    Shelby, Robert M.
    Narayanan, Pritish
    Ambrogio, Stefano
    Tsai, Hsinyu
    Hosokawa, Kohji
    Lewis, Scott C.
    Burr, Geoffrey W.
    2017 IEEE ELECTRON DEVICES TECHNOLOGY AND MANUFACTURING CONFERENCE (EDTM), 2017, : 8 - 9
  • [25] Serverless Computing for Next-generation Application Development
    Toosi, Adel N.
    Javadi, Bahman
    Iosup, Alexandru
    Smirni, Evgenia
    Dustdar, Schahram
    FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2025, 164
  • [26] Reconfigurable Computing in Next-Generation Automotive Networks
    Shreejith, Shanker
    Fahmy, Suhaib A.
    Lukasiewycz, Martin
    IEEE EMBEDDED SYSTEMS LETTERS, 2013, 5 (01) : 12 - 15
  • [27] Multivariate Optical Computing and Next-generation Spectrometer
    Duan Chao-Shu
    Cai Wen-Sheng
    Shao Xue-Guang
    CHINESE JOURNAL OF ANALYTICAL CHEMISTRY, 2021, 49 (04) : 593 - 601
  • [28] Neuromorphic Technologies for Next-Generation Cognitive Computing
    Narayanan, Pritish
    Burr, Geoffrey W.
    Ambrogio, Stefano
    Shelby, Robert M.
    2017 IEEE 9TH INTERNATIONAL MEMORY WORKSHOP (IMW), 2017, : 20 - 23
  • [29] NEW CENTER SUPPORTS NEXT-GENERATION COMPUTING
    不详
    ADVANCED MATERIALS & PROCESSES, 2018, 176 (02): : 6 - 6
  • [30] Deep learning in next-generation sequencing
    Schmidt, Bertil
    Hildebrandt, Andreas
    DRUG DISCOVERY TODAY, 2020, 26 (01) : 173 - 180