Assessing cumulative incidence functions under the semiparametric additive risk model

被引:6
|
作者
Hyun, Seunggeun [2 ]
Sun, Yanqing [3 ]
Sundaram, Rajeshwari [1 ]
机构
[1] NICHHD, Biostat & Bioinformat Branch, Div Epidemiol Stat & Prevent Res, NIH, Rockville, MD 20852 USA
[2] Univ S Carolina Upstate, Div Math & Comp Sci, Spartanburg, SC 29303 USA
[3] Univ N Carolina, Dept Math & Stat, Charlotte, NC 28223 USA
关键词
competing risks; survival analysis; cumulative incidence function; confidence interval; semiparametric model;
D O I
10.1002/sim.3640
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
In analyzing competing risks data, a quantity of considerable interest is the cumulative incidence function. Often, the effect of covariates on the cumulative incidence function is modeled via the proportional hazards model for the cause-specific hazard function. As the proportionality assumption may be too restrictive in practice, we consider an alternative more flexible semiparametric additive hazards model of (Biometrika 1994; 81:501-514) for the cause-specific hazard. This model specifies the effect of covariates on the cause-specific hazard to be additive as well as allows the effect of some covariates to be fixed and that of others to be time varying. We present an approach for constructing confidence intervals as well as confidence bands for the cause-specific cumulative incidence function of subjects with given values of the covariates. Furthermore, we also present an approach for constructing confidence intervals and confidence bands for comparing two cumulative incidence functions given values of the covariates. The finite sample property of the proposed estimators is investigated through simulations. We conclude our paper with an analysis of the well-known malignant melanoma data using our method. Published in 2009 by John Wiley & Sons, Ltd.
引用
下载
收藏
页码:2748 / 2768
页数:21
相关论文
共 50 条
  • [21] Approximate tests for the equality of two cumulative incidence functions of a competing risk
    Dobler, Dennis
    Pauly, Markus
    [J]. STATISTICS, 2017, 51 (06) : 1238 - 1258
  • [22] Semiparametric additive models under symmetric distributions
    Germán Ibacache-Pulgar
    Gilberto A. Paula
    Francisco José A. Cysneiros
    [J]. TEST, 2013, 22 : 103 - 121
  • [23] Semiparametric additive models under symmetric distributions
    Ibacache-Pulgar, German
    Paula, Gilberto A.
    Cysneiros, Francisco Jose A.
    [J]. TEST, 2013, 22 (01) : 103 - 121
  • [24] Constrained parametric model for simultaneous inference of two cumulative incidence functions
    Shi, Haiwen
    Cheng, Yu
    Jeong, Jong-Hyeon
    [J]. BIOMETRICAL JOURNAL, 2013, 55 (01) : 82 - 96
  • [25] Prediction of cumulative incidence function under the proportional hazards model
    Department of Biomathematics, M. D. Anderson Cancer Center, University of Texas, Houston, TX 77030, United States
    不详
    [J]. Biometrics, 1 (219-228):
  • [26] Prediction of cumulative incidence function under the proportional hazards model
    Cheng, SC
    Fine, JP
    Wei, LJ
    [J]. BIOMETRICS, 1998, 54 (01) : 219 - 228
  • [27] Efficient estimation of semiparametric transformation models for the cumulative incidence of competing risks
    Mao, Lu
    Lin, D. Y.
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2017, 79 (02) : 573 - 587
  • [28] Summarizing differences in cumulative incidence functions
    Zhang, Mei-Jie
    Fine, Jason
    [J]. STATISTICS IN MEDICINE, 2008, 27 (24) : 4939 - 4949
  • [29] Estimation of cumulative incidence functions in competing risks studies under an order restriction
    El Barmi, H
    Kochar, SC
    Mukerjee, H
    Samaniego, FJ
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2004, 118 (1-2) : 145 - 165
  • [30] A semiparametric additive regression model for longitudinal data
    Martinussen, T
    Scheike, TH
    [J]. BIOMETRIKA, 1999, 86 (03) : 691 - 702