Semiparametric additive models under symmetric distributions

被引:30
|
作者
Ibacache-Pulgar, German [1 ]
Paula, Gilberto A. [2 ]
Cysneiros, Francisco Jose A. [3 ]
机构
[1] Univ Valparaiso, Fac Ciencias, Dept Estadist, Valparaiso, Chile
[2] Univ Sao Paulo, Dept Estat, Inst Matemat & Estat, BR-05508090 Sao Paulo, Brazil
[3] Univ Fed Pernambuco, CCEN, Dept Estat, BR-50740540 Recife, PE, Brazil
基金
巴西圣保罗研究基金会;
关键词
Back-fitting algorithm; Cubic smoothing splines; Non-parametric models; Robust estimates; Student-t models; INFLUENCE DIAGNOSTICS; REGRESSION; SELECTION;
D O I
10.1007/s11749-012-0309-z
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper we discuss estimation and diagnostic procedures in semiparametric additive models with symmetric errors in order to permit distributions with heavier and lighter tails than the normal ones, such as Student-t, Pearson VII, power exponential, logistics I and II, and contaminated normal, among others. Such models belong to the general class of statistical models GAMLSS proposed by Rigby and Stasinopoulos (Appl. Stat. 54:507-554, 2005). A back-fitting algorithm to attain the maximum penalized likelihood estimates (MPLEs) by using natural cubic smoothing splines is presented. In particular, the score functions and Fisher information matrices for the parameters of interest are expressed in a similar notation of that used in parametric symmetric models. Sufficient conditions on the existence of the MPLEs are presented as well as some inferential results and discussions on degrees of freedom and smoothing parameter estimation. Diagnostic quantities such as leverage, standardized residual and normal curvatures of local influence under two perturbation schemes are derived. A real data set previously analyzed under normal linear models is reanalyzed under semiparametric additive models with symmetric errors.
引用
收藏
页码:103 / 121
页数:19
相关论文
共 50 条
  • [1] Semiparametric additive models under symmetric distributions
    Germán Ibacache-Pulgar
    Gilberto A. Paula
    Francisco José A. Cysneiros
    [J]. TEST, 2013, 22 : 103 - 121
  • [2] Semiparametric Mixtures of Symmetric Distributions
    Butucea, Cristina
    Vandekerkhove, Pierre
    [J]. SCANDINAVIAN JOURNAL OF STATISTICS, 2014, 41 (01) : 227 - 239
  • [3] Semiparametric regression models under skew scale mixtures of normal distributions
    Ferreira, Clecio S.
    Dias, Ronaldo
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2024,
  • [4] Semiparametric additive accelerated life models
    Bordes, L
    [J]. SCANDINAVIAN JOURNAL OF STATISTICS, 1999, 26 (03) : 345 - 361
  • [5] Analysis of generalized additive semiparametric models
    Bagdonavicius, V
    Nikulin, M
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1996, 323 (09): : 1079 - 1084
  • [6] Semiparametric mixture of additive regression models
    Zhang, Yi
    Zheng, Qingle
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2018, 47 (03) : 681 - 697
  • [7] Bayesian semiparametric modeling and inference with mixtures of symmetric distributions
    Athanasios Kottas
    Gilbert W. Fellingham
    [J]. Statistics and Computing, 2012, 22 : 93 - 106
  • [8] Bayesian semiparametric modeling and inference with mixtures of symmetric distributions
    Kottas, Athanasios
    Fellingham, Gilbert W.
    [J]. STATISTICS AND COMPUTING, 2012, 22 (01) : 93 - 106
  • [9] Semiparametric accelerated failure time models under unspecified random effect distributions
    Seo, Byungtae
    Ha, Il Do
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2024, 195
  • [10] Semiparametric topographical mixture models with symmetric errors
    Butucea, C.
    Tzoumpe, R. Ngueyep
    Vandekerkhove, P.
    [J]. BERNOULLI, 2017, 23 (02) : 825 - 862