Semiparametric additive models under symmetric distributions

被引:0
|
作者
Germán Ibacache-Pulgar
Gilberto A. Paula
Francisco José A. Cysneiros
机构
[1] Universidad de Valparaíso,Departamento de Estadística, Facultad de Ciencias
[2] Instituto de Matemática e Estatística—USP,Departamento de Estatística
[3] CCEN-UFPE-Cidade Universitária,Departamento de Estatística
来源
TEST | 2013年 / 22卷
关键词
Back-fitting algorithm; Cubic smoothing splines; Non-parametric models; Robust estimates; Student-t models; 62-07; 62G08; 62J20;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we discuss estimation and diagnostic procedures in semiparametric additive models with symmetric errors in order to permit distributions with heavier and lighter tails than the normal ones, such as Student-t, Pearson VII, power exponential, logistics I and II, and contaminated normal, among others. Such models belong to the general class of statistical models GAMLSS proposed by Rigby and Stasinopoulos (Appl. Stat. 54:507–554, 2005). A back-fitting algorithm to attain the maximum penalized likelihood estimates (MPLEs) by using natural cubic smoothing splines is presented. In particular, the score functions and Fisher information matrices for the parameters of interest are expressed in a similar notation of that used in parametric symmetric models. Sufficient conditions on the existence of the MPLEs are presented as well as some inferential results and discussions on degrees of freedom and smoothing parameter estimation. Diagnostic quantities such as leverage, standardized residual and normal curvatures of local influence under two perturbation schemes are derived. A real data set previously analyzed under normal linear models is reanalyzed under semiparametric additive models with symmetric errors.
引用
收藏
页码:103 / 121
页数:18
相关论文
共 50 条
  • [1] Semiparametric additive models under symmetric distributions
    Ibacache-Pulgar, German
    Paula, Gilberto A.
    Cysneiros, Francisco Jose A.
    [J]. TEST, 2013, 22 (01) : 103 - 121
  • [2] Semiparametric Mixtures of Symmetric Distributions
    Butucea, Cristina
    Vandekerkhove, Pierre
    [J]. SCANDINAVIAN JOURNAL OF STATISTICS, 2014, 41 (01) : 227 - 239
  • [3] Semiparametric regression models under skew scale mixtures of normal distributions
    Ferreira, Clecio S.
    Dias, Ronaldo
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2024,
  • [4] Semiparametric additive accelerated life models
    Bordes, L
    [J]. SCANDINAVIAN JOURNAL OF STATISTICS, 1999, 26 (03) : 345 - 361
  • [5] Analysis of generalized additive semiparametric models
    Bagdonavicius, V
    Nikulin, M
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1996, 323 (09): : 1079 - 1084
  • [6] Semiparametric mixture of additive regression models
    Zhang, Yi
    Zheng, Qingle
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2018, 47 (03) : 681 - 697
  • [7] Bayesian semiparametric modeling and inference with mixtures of symmetric distributions
    Athanasios Kottas
    Gilbert W. Fellingham
    [J]. Statistics and Computing, 2012, 22 : 93 - 106
  • [8] Bayesian semiparametric modeling and inference with mixtures of symmetric distributions
    Kottas, Athanasios
    Fellingham, Gilbert W.
    [J]. STATISTICS AND COMPUTING, 2012, 22 (01) : 93 - 106
  • [9] Semiparametric accelerated failure time models under unspecified random effect distributions
    Seo, Byungtae
    Ha, Il Do
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2024, 195
  • [10] Bayesian Semiparametric Symmetric Models for Binary Data
    Diniz, Marcio Augusto
    de Braganca Pereira, Carlos Alberto
    Polpo, Adriano
    [J]. INTERDISCIPLINARY BAYESIAN STATISTICS, EBEB 2014, 2015, 118 : 323 - 335