Pairing Symmetries for Euclidean and Spherical Frameworks

被引:4
|
作者
Clinch, Katie [1 ]
Nixon, Anthony [2 ]
Schulze, Bernd [2 ]
Whiteley, Walter [3 ]
机构
[1] Univ Tokyo, Dept Math Informat, Tokyo, Japan
[2] Univ Lancaster, Dept Math & Stat, Lancaster LA1 4YF, England
[3] York Univ, Dept Math & Stat, Toronto, ON, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Bar-joint framework; Spherical framework; Point-hyperplane framework; Symmetry group; Incidental symmetry; Forced-symmetric rigidity; FORCED RIGIDITY;
D O I
10.1007/s00454-020-00198-9
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We consider the effect of symmetry on the rigidity of bar-joint frameworks, spherical frameworks and point-hyperplane frameworks in R-d. In particular, for a graph G=(V,E) and a framework (G, p), we show that, under forced or incidental symmetry, infinitesimal rigidity for spherical frameworks with vertices in some subset X subset of V realised on the equator and point-hyperplane frameworks with the vertices in X representing hyperplanes are equivalent. We then show, again under forced or incidental symmetry, that infinitesimal rigidity properties under certain symmetry groups can be paired, or clustered, under inversion on the sphere so that infinitesimal rigidity with a given group is equivalent to infinitesimal rigidity under a paired group. The fundamental basic example is that mirror symmetric rigidity is equivalent to half-turn symmetric rigidity on the 2-sphere. With these results in hand we also deduce some combinatorial consequences for the rigidity of symmetric bar-joint and point-line frameworks.
引用
收藏
页码:483 / 518
页数:36
相关论文
共 50 条
  • [41] Localized waves with spherical harmonic symmetries
    Mills, M. S.
    Siviloglou, G. A.
    Efremidis, N.
    Graf, T.
    Wright, E. M.
    Moloney, J. V.
    Christodoulides, D. N.
    PHYSICAL REVIEW A, 2012, 86 (06):
  • [42] Symmetries and deformations in the spherical shell model
    Van Isacker, P.
    Pittel, S.
    PHYSICA SCRIPTA, 2016, 91 (02)
  • [43] Competition of pairing symmetries and a mechanism for Berezinskii pairing in quasi-one-dimensional systems
    Shigeta, Keisuke
    Tanaka, Yukio
    Kuroki, Kazuhiko
    Onari, Seiichiro
    Aizawa, Hirohito
    PHYSICAL REVIEW B, 2011, 83 (14)
  • [44] Superconducting pairing symmetries in anisotropic triangular quantum antiferromagnets
    Gan, J. Y.
    Chen, Yan
    Zhang, F. C.
    PHYSICAL REVIEW B, 2006, 74 (09)
  • [45] PAIRING ENERGIES IN SPHERICAL AND DEFORMED NUCLEI
    FANO, G
    SAWICKI, J
    TOMASINI, A
    NUOVO CIMENTO, 1963, 29 (01): : 256 - +
  • [46] Josephson current in graphene: Role of unconventional pairing symmetries
    Linder, Jacob
    Black-Schaffer, Annica M.
    Yokoyama, Takehito
    Doniach, Sebastian
    Sudbo, Asle
    PHYSICAL REVIEW B, 2009, 80 (09):
  • [47] Pairing correlations and symmetries in odd-A nuclei.
    Luis Egido, J.
    Borrajo, Marta
    16TH INTERNATIONAL SYMPOSIUM ON CAPTURE GAMMA-RAY SPECTROSCOPY AND RELATED TOPICS (CGS16), 2018, 178
  • [48] Pairing symmetries in a Hubbard model on an anisotropic triangular lattice
    Watanabe, Tsutomu
    Yokoyama, Hisatoshi
    Tanaka, Yukio
    Inoue, Jun-Ichiro
    PHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONS, 2007, 463 : 152 - 156
  • [49] Hopf Algebra Symmetries of an Integrable Hamiltonian for Anyonic Pairing
    Links, Jon
    AXIOMS, 2012, 1 (02): : 226 - 237
  • [50] Symmetries of pairing correlations in superconductor-ferromagnet nanostructures
    Eschrig, M.
    Loefwander, T.
    Champel, T.
    Cuevas, J. C.
    Kopu, J.
    Schoen, Gerd
    JOURNAL OF LOW TEMPERATURE PHYSICS, 2007, 147 (3-4) : 457 - 476