Pairing Symmetries for Euclidean and Spherical Frameworks

被引:4
|
作者
Clinch, Katie [1 ]
Nixon, Anthony [2 ]
Schulze, Bernd [2 ]
Whiteley, Walter [3 ]
机构
[1] Univ Tokyo, Dept Math Informat, Tokyo, Japan
[2] Univ Lancaster, Dept Math & Stat, Lancaster LA1 4YF, England
[3] York Univ, Dept Math & Stat, Toronto, ON, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Bar-joint framework; Spherical framework; Point-hyperplane framework; Symmetry group; Incidental symmetry; Forced-symmetric rigidity; FORCED RIGIDITY;
D O I
10.1007/s00454-020-00198-9
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We consider the effect of symmetry on the rigidity of bar-joint frameworks, spherical frameworks and point-hyperplane frameworks in R-d. In particular, for a graph G=(V,E) and a framework (G, p), we show that, under forced or incidental symmetry, infinitesimal rigidity for spherical frameworks with vertices in some subset X subset of V realised on the equator and point-hyperplane frameworks with the vertices in X representing hyperplanes are equivalent. We then show, again under forced or incidental symmetry, that infinitesimal rigidity properties under certain symmetry groups can be paired, or clustered, under inversion on the sphere so that infinitesimal rigidity with a given group is equivalent to infinitesimal rigidity under a paired group. The fundamental basic example is that mirror symmetric rigidity is equivalent to half-turn symmetric rigidity on the 2-sphere. With these results in hand we also deduce some combinatorial consequences for the rigidity of symmetric bar-joint and point-line frameworks.
引用
收藏
页码:483 / 518
页数:36
相关论文
共 50 条
  • [31] Metric characterizations of spherical and Euclidean buildings
    Charney, Ruth
    Lytchak, Alexander
    GEOMETRY & TOPOLOGY, 2001, 5 : 521 - 550
  • [32] Rigidity of submanifolds in the Euclidean and spherical spaces
    Jonatan F. da Silva
    Henrique F. de Lima
    Fábio R. dos Santos
    Marco Antonio L. Velásquez
    Rendiconti del Circolo Matematico di Palermo Series 2, 2020, 69 : 159 - 165
  • [33] Rigidity of submanifolds in the Euclidean and spherical spaces
    da Silva, Jonatan F.
    de Lima, Henrique F.
    dos Santos, Fabio R.
    Velasquez, Marco Antonio L.
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2020, 69 (01) : 159 - 165
  • [34] Spherical designs and heights of Euclidean lattices
    Coulangeon, Renaud
    Lazzarini, Giovanni
    JOURNAL OF NUMBER THEORY, 2014, 141 : 288 - 315
  • [35] EUCLIDEAN, HYPERBOLIC AND SPHERICAL BLOCH CONSTANTS
    MINDA, CD
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1982, 6 (03) : 441 - 444
  • [36] Spherical rigidities of submanifolds in Euclidean spaces
    Cheng, QM
    JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2004, 56 (02) : 475 - 487
  • [37] EUCLIDEAN REALIZATION OF THE PRODUCT OF CYCLES WITHOUT HIDDEN SYMMETRIES
    Lawrencenko, S.
    Shchikanoo, A. Yu
    SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2015, 12 : 777 - 783
  • [38] DETERMINATION OF THE SYMMETRIES CHARACTERIZING SEPARABLE SYSTEMS IN EUCLIDEAN SPACES
    REID, GJ
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1988, 21 (02): : 353 - 362
  • [39] Implementation of the extended Euclidean algorithm for the tate pairing on FPGA
    Ito, T
    Shibata, Y
    Oguri, K
    FIELD-PROGRAMMABLE LOGIC AND APPLICATIONS, PROCEEDINGS, 2004, 3203 : 911 - 916
  • [40] Scale symmetries of spherical string fluids
    Glass, EN
    Krisch, JP
    JOURNAL OF MATHEMATICAL PHYSICS, 1999, 40 (08) : 4056 - 4063