Pairing Symmetries for Euclidean and Spherical Frameworks

被引:4
|
作者
Clinch, Katie [1 ]
Nixon, Anthony [2 ]
Schulze, Bernd [2 ]
Whiteley, Walter [3 ]
机构
[1] Univ Tokyo, Dept Math Informat, Tokyo, Japan
[2] Univ Lancaster, Dept Math & Stat, Lancaster LA1 4YF, England
[3] York Univ, Dept Math & Stat, Toronto, ON, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Bar-joint framework; Spherical framework; Point-hyperplane framework; Symmetry group; Incidental symmetry; Forced-symmetric rigidity; FORCED RIGIDITY;
D O I
10.1007/s00454-020-00198-9
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We consider the effect of symmetry on the rigidity of bar-joint frameworks, spherical frameworks and point-hyperplane frameworks in R-d. In particular, for a graph G=(V,E) and a framework (G, p), we show that, under forced or incidental symmetry, infinitesimal rigidity for spherical frameworks with vertices in some subset X subset of V realised on the equator and point-hyperplane frameworks with the vertices in X representing hyperplanes are equivalent. We then show, again under forced or incidental symmetry, that infinitesimal rigidity properties under certain symmetry groups can be paired, or clustered, under inversion on the sphere so that infinitesimal rigidity with a given group is equivalent to infinitesimal rigidity under a paired group. The fundamental basic example is that mirror symmetric rigidity is equivalent to half-turn symmetric rigidity on the 2-sphere. With these results in hand we also deduce some combinatorial consequences for the rigidity of symmetric bar-joint and point-line frameworks.
引用
收藏
页码:483 / 518
页数:36
相关论文
共 50 条
  • [21] Conformal Symmetries of Spherical Spacetimes
    Moopanar, S.
    Maharaj, S. D.
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2010, 49 (08) : 1878 - 1885
  • [22] On the volume of a spherical octahedron with symmetries
    Abrosimov N.V.
    Godoy-Molina M.
    Mednykh A.D.
    Journal of Mathematical Sciences, 2009, 161 (1) : 1 - 10
  • [23] Conformal Symmetries of Spherical Spacetimes
    S. Moopanar
    S. D. Maharaj
    International Journal of Theoretical Physics, 2010, 49 : 1878 - 1885
  • [24] SPHERICAL SYMMETRIES FROM DYNAMICS
    CHUNG, KW
    CHAN, HSY
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1995, 29 (07) : 67 - 81
  • [25] Spherical Wavelets, Kernels and Symmetries
    Bernstein, Swanhild
    Ebert, Svend
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, VOLS 1 AND 2, 2009, 1168 : 761 - 764
  • [26] An invariance property for frameworks in Euclidean space
    Baird, Paul
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2014, 440 : 243 - 265
  • [27] Transformations and symmetries of the pairing fields in nuclear matter
    da Costa Quadros, A. S.
    Carlson, B. V.
    NUCLEAR PHYSICS 2008: XXXI WORKSHOP ON NUCLEAR PHYSICS IN BRAZIL, 2009, 1139 : 195 - 196
  • [28] Symmetries of Pairing Correlations in Superconductor–Ferromagnet Nanostructures
    M. Eschrig
    T. Löfwander
    T. Champel
    J. C. Cuevas
    J. Kopu
    Gerd Schön
    Journal of Low Temperature Physics, 2007, 147 : 457 - 476
  • [29] THE SPECTRA OF THE SPHERICAL AND EUCLIDEAN TRIANGLE GROUPS
    Harmer, Mark
    JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2008, 84 (02) : 217 - 227
  • [30] Spherical product hypersurfaces in Euclidean spaces
    Buyukkutuk, Sezgin
    Ozturk, Gunay
    TURKISH JOURNAL OF MATHEMATICS, 2024, 48 (05)