Pairing Symmetries for Euclidean and Spherical Frameworks

被引:4
|
作者
Clinch, Katie [1 ]
Nixon, Anthony [2 ]
Schulze, Bernd [2 ]
Whiteley, Walter [3 ]
机构
[1] Univ Tokyo, Dept Math Informat, Tokyo, Japan
[2] Univ Lancaster, Dept Math & Stat, Lancaster LA1 4YF, England
[3] York Univ, Dept Math & Stat, Toronto, ON, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Bar-joint framework; Spherical framework; Point-hyperplane framework; Symmetry group; Incidental symmetry; Forced-symmetric rigidity; FORCED RIGIDITY;
D O I
10.1007/s00454-020-00198-9
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We consider the effect of symmetry on the rigidity of bar-joint frameworks, spherical frameworks and point-hyperplane frameworks in R-d. In particular, for a graph G=(V,E) and a framework (G, p), we show that, under forced or incidental symmetry, infinitesimal rigidity for spherical frameworks with vertices in some subset X subset of V realised on the equator and point-hyperplane frameworks with the vertices in X representing hyperplanes are equivalent. We then show, again under forced or incidental symmetry, that infinitesimal rigidity properties under certain symmetry groups can be paired, or clustered, under inversion on the sphere so that infinitesimal rigidity with a given group is equivalent to infinitesimal rigidity under a paired group. The fundamental basic example is that mirror symmetric rigidity is equivalent to half-turn symmetric rigidity on the 2-sphere. With these results in hand we also deduce some combinatorial consequences for the rigidity of symmetric bar-joint and point-line frameworks.
引用
收藏
页码:483 / 518
页数:36
相关论文
共 50 条
  • [1] Pairing Symmetries for Euclidean and Spherical Frameworks
    Katie Clinch
    Anthony Nixon
    Bernd Schulze
    Walter Whiteley
    Discrete & Computational Geometry, 2020, 64 : 483 - 518
  • [2] Spiral waves and Euclidean symmetries
    Wulff, Claudia
    Zeitschrift fur Physikalische Chemie, 2002, 216 (04): : 535 - 550
  • [3] Spiral waves and Euclidean symmetries
    Wulff, C
    ZEITSCHRIFT FUR PHYSIKALISCHE CHEMIE-INTERNATIONAL JOURNAL OF RESEARCH IN PHYSICAL CHEMISTRY & CHEMICAL PHYSICS, 2002, 216 (04): : 535 - 550
  • [4] Symmetries, Supersymmetries, and Pairing in Nuclei
    Balantekin, A. B.
    LATIN-AMERICAN SCHOOL OF PHYSICS XL ELAF: SYMMETRIES IN PHYSICS, 2011, 1334 : 29 - 53
  • [5] ON THE SYMMETRIES OF SPHERICAL HARMONICS
    MEYER, B
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1954, 6 (01): : 135 - 157
  • [6] ON THE SYMMETRIES OF SPHERICAL HARMONICS
    ALTMANN, SL
    BRADLEY, CJ
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1963, 255 (1054) : 199 - 215
  • [7] NON-EUCLIDEAN SYMMETRIES IN CRYSTALS
    JANNER, A
    PHYSICAL REVIEW LETTERS, 1991, 67 (16) : 2159 - 2162
  • [8] SYMMETRIES OF SPHERICAL HARMONICS
    DEMARIANUNESMENDES, R
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 204 (APR) : 161 - 178
  • [9] Pairing in spherical nanograins
    Kuzmenko, N. K.
    Mikhajlov, V. M.
    PHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONS, 2010, 470 (03): : 193 - 201
  • [10] Ways to Compute in Euclidean Frameworks
    Durand-Lose, Jerome
    UNCONVENTIONAL COMPUTATION AND NATURAL COMPUTATION, UCNC 2017, 2017, 10240 : 8 - 25