Parameter Estimation of Chaotic Dynamical Systems Using HEQPSO

被引:0
|
作者
Ko, Chia-Nan [1 ]
Jau, You-Min [2 ]
Jeng, Jin-Tsong [3 ]
机构
[1] Nan Kai Univ Technol, Dept Automat Engn, Nantou 542, Taiwan
[2] Formosa Adv Technol Co, Yunlin 632, Taiwan
[3] Natl Formosa Univ, Dept Comp Sci & Informat Engn, Yunlin 632, Taiwan
关键词
quantum-behaved particle swarm optimization; chaotic system; parameter estimation; hybrid evolution; adaptive annealing teaming; PARTICLE SWARM OPTIMIZATION; GENETIC ALGORITHM; ADAPTIVE-CONTROL; SYNCHRONIZATION;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this study, a quantum-behaved particle swarm optimization (QPSO) based on hybrid evolution (HEQPSO) approach is proposed to estimate parameters of chaotic dynamic systems, in which the proposed HEQPSO algorithm combines the conceptions of genetic algorithm (GA) and adaptive annealing learning algorithm with the QPSO algorithm. That is, the mutation strategy in GA is used for conquering premature; adaptive decaying learning similar to simulated annealing (SA) is adopted for overcoming stagnation problem in searching optimal solutions. Three examples are illustrated to estimate parameters of chaotic dynamical systems using the proposed HEQPSO approach. From the numerical simulations and comparisons with other extant evolutionary methods in Lorenz system, the validity and superiority of the HEQPSO approach are verified. In addition, the effectiveness and robustness of parameter estimations for Chen and Rossler systems are demonstrated by the proposed HEQPSO approach.
引用
收藏
页码:675 / 689
页数:15
相关论文
共 50 条
  • [1] Parameter estimation of dynamical systems via a chaotic ant swarm
    Peng, Haipeng
    Li, Lixiang
    Yang, Yixian
    Liu, Fei
    PHYSICAL REVIEW E, 2010, 81 (01):
  • [2] Parameter estimation of chaotic dynamical systems using LS-based cost functions on the state space
    Ali Mousazadeh
    Yasser Shekofteh
    Pramana, 2022, 96
  • [3] Parameter estimation of chaotic dynamical systems using LS-based cost functions on the state space
    Mousazadeh, Ali
    Shekofteh, Yasser
    PRAMANA-JOURNAL OF PHYSICS, 2021, 96 (01):
  • [4] Parameter estimation for a chaotic dynamical system with partial observations
    Zhang, Jiantang
    Huang, Sixun
    Cheng, Jin
    JOURNAL OF INVERSE AND ILL-POSED PROBLEMS, 2021, 29 (04): : 515 - 524
  • [5] Parameter and state estimation of experimental chaotic systems using synchronization
    Quinn, John C.
    Bryant, Paul H.
    Creveling, Daniel R.
    Klein, Sallee R.
    Abarbanel, Henry D. I.
    PHYSICAL REVIEW E, 2009, 80 (01)
  • [6] On closure parameter estimation in chaotic systems
    Hakkarainen, J.
    Ilin, A.
    Solonen, A.
    Laine, M.
    Haario, H.
    Tamminen, J.
    Oja, E.
    Jarvinen, H.
    NONLINEAR PROCESSES IN GEOPHYSICS, 2012, 19 (01) : 127 - 143
  • [7] ROBUST PARAMETER ESTIMATION OF CHAOTIC SYSTEMS
    Springer, Sebastian
    Haario, Heikki
    Shemyakin, Vladimir
    Kalachev, Leonid
    Shchepakin, Denis
    INVERSE PROBLEMS AND IMAGING, 2019, 13 (06) : 1189 - 1212
  • [8] PARAMETER ESTIMATION OF STOCHASTIC CHAOTIC SYSTEMS
    Maraia, Ramona
    Springer, Sebastian
    Haario, Heikki
    Hakkarainen, Janne
    Saksman, Eero
    INTERNATIONAL JOURNAL FOR UNCERTAINTY QUANTIFICATION, 2021, 11 (02) : 49 - 62
  • [9] Parameter Estimation for Dynamical Systems Using a Deep Neural Network
    Dufera, Tamirat Temesgen
    Seboka, Yadeta Chimdessa
    Fresneda Portillo, Carlos
    APPLIED COMPUTATIONAL INTELLIGENCE AND SOFT COMPUTING, 2022, 2022
  • [10] Parameter estimation for random dynamical systems using slice sampling
    Hatjispyros, S. J.
    Nicoleris, Theodoros
    Walker, Stephen G.
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2007, 381 (1-2) : 71 - 81