An alternative class of models to position social network groups in latent spaces

被引:0
|
作者
Nolau, Izabel [1 ]
Ferreira, Gustavo S. [2 ]
机构
[1] Univ Fed Rio de Janeiro, Dept Stat Methods, 149 Athos Silveira Ramos Ave, BR-21941909 Rio De Janeiro, RJ, Brazil
[2] Brazilian Inst Geog & Stat IBGE, Natl Sch Stat Sci ENCE, 106 Andre Cavalcanti St, BR-20231050 Rio De Janeiro, RJ, Brazil
关键词
Blockmodel; social networks; multidimensional scaling; latent space; visualization; STOCHASTIC BLOCKMODELS; GENE-EXPRESSION; PREDICTION;
D O I
10.1214/21-BJPS526
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Identifying key nodes, estimating the probability of connection between them, and distinguishing latent groups are some of the main objectives of social network analysis. In this paper, we propose a class of blockmodels to model stochastic equivalence and visualize groups in an unobservable space. In this setting, the proposed method is based on two approaches: latent distances and latent dissimilarities at the group level. The projection proposed in the paper is performed without needing to project individuals, unlike the main approaches in the literature. Our approach can be used in undirected or directed graphs and is flexible enough to cluster and quantify between and within-group tie probabilities in social networks. The effectiveness of the methodology in representing groups in latent spaces was analyzed under artificial datasets and in two case studies.
引用
收藏
页码:263 / 286
页数:24
相关论文
共 50 条
  • [31] LATENT CLASS MODELS FOR KNOWLEDGE DOMAINS
    BERGAN, JR
    STONE, CA
    [J]. PSYCHOLOGICAL BULLETIN, 1985, 98 (01) : 166 - 184
  • [32] Latent class models for collaborative filtering
    Hofmann, T
    Puzicha, J
    [J]. IJCAI-99: PROCEEDINGS OF THE SIXTEENTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOLS 1 & 2, 1999, : 688 - 693
  • [33] Latent class models in landscape valuation
    Alvarez-Farizo, Begona
    Figueiredo, Fernando
    [J]. AGER-REVISTA DE ESTUDIOS SOBRE DESPOBLACION Y DESARROLLO RURAL, 2008, (07): : 58 - 76
  • [34] LATENT CLASS MODELS FOR RANK ORDER
    CROON, MMA
    [J]. ZEITSCHRIFT FUR EXPERIMENTELLE UND ANGEWANDTE PSYCHOLOGIE, 1988, 35 (01): : 1 - 22
  • [35] Continuous latent position models for instantaneous interactions
    Rastelli, Riccardo
    Corneli, Marco
    [J]. NETWORK SCIENCE, 2023, 11 (04) : 560 - 588
  • [36] The girth alternative for mapping class groups
    Nakamura, Kei
    [J]. GROUPS GEOMETRY AND DYNAMICS, 2014, 8 (01) : 225 - 244
  • [38] Network Hawkes process models for exploring latent hierarchy in social animal interactions
    Ward, Owen G.
    Wu, Jing
    Zheng, Tian
    Smith, Anna L.
    Curley, James P.
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES C-APPLIED STATISTICS, 2022, 71 (05) : 1402 - 1426
  • [39] Tracking the Dimensions of Latent Spaces of Gaussian Process Latent Variable Models
    Liu, Yuhao
    Djuric, Petar M.
    [J]. 2022 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2022, : 4193 - 4197
  • [40] An Alternative Approach for Nonlinear Latent Variable Models
    Mooijaart, Ab
    Bentler, Peter M.
    [J]. STRUCTURAL EQUATION MODELING-A MULTIDISCIPLINARY JOURNAL, 2010, 17 (03) : 357 - 373