Continuous latent position models for instantaneous interactions

被引:1
|
作者
Rastelli, Riccardo [1 ]
Corneli, Marco [2 ]
机构
[1] Univ Coll Dublin, Sch Math & Stat, Dublin, Ireland
[2] Univ Cote dAzur, INRIA, MAASAI Team, Ctr Modeling Simulat & Interact, Nice, France
关键词
Latent position models; dynamic networks; non-homogeneous Poisson process; spatial embeddings; statistical network analysis; STOCHASTIC BLOCK MODEL; SPACE MODELS; NETWORKS; MAXIMIZATION; EXTENSION;
D O I
10.1017/nws.2023.14
中图分类号
O1 [数学]; C [社会科学总论];
学科分类号
03 ; 0303 ; 0701 ; 070101 ;
摘要
We create a framework to analyze the timing and frequency of instantaneous interactions between pairs of entities. This type of interaction data is especially common nowadays and easily available. Examples of instantaneous interactions include email networks, phone call networks, and some common types of technological and transportation networks. Our framework relies on a novel extension of the latent position network model: we assume that the entities are embedded in a latent Euclidean space and that they move along individual trajectories which are continuous over time. These trajectories are used to characterize the timing and frequency of the pairwise interactions. We discuss an inferential framework where we estimate the individual trajectories from the observed interaction data and propose applications on artificial and real data.
引用
收藏
页码:560 / 588
页数:29
相关论文
共 50 条
  • [1] LEARNABILITY OF LATENT POSITION NETWORK MODELS
    Choi, David S.
    Wolfe, Patrick J.
    [J]. 2011 IEEE STATISTICAL SIGNAL PROCESSING WORKSHOP (SSP), 2011, : 521 - 524
  • [2] Faster MCMC for Gaussian latent position network models
    Spencer, Neil A.
    Junker, Brian W.
    Sweet, Tracy M.
    [J]. NETWORK SCIENCE, 2022, 10 (01) : 20 - 45
  • [3] PROJECTIVE, SPARSE AND LEARNABLE LATENT POSITION NETWORK MODELS
    Spencer, Neil A.
    Shalizi, Cosma Rohilla
    [J]. ANNALS OF STATISTICS, 2023, 51 (06): : 2506 - 2525
  • [4] Computationally efficient inference for latent position network models
    Rastelli, Riccardo
    Maire, Florian
    Friel, Nial
    [J]. ELECTRONIC JOURNAL OF STATISTICS, 2024, 18 (01): : 2531 - 2570
  • [5] Interactions of Latent Variables in Structural Equation Models
    Bollen, Kenneth A.
    Paxton, Pamela
    [J]. STRUCTURAL EQUATION MODELING-A MULTIDISCIPLINARY JOURNAL, 1998, 5 (03) : 267 - 293
  • [6] Relating Latent Change Score and Continuous Time Models
    Voelkle, Manuel C.
    Oud, Johan H. L.
    [J]. STRUCTURAL EQUATION MODELING-A MULTIDISCIPLINARY JOURNAL, 2015, 22 (03) : 366 - 381
  • [7] Latent variable models with mixed continuous and polytomous data
    Shi, JQ
    Lee, SY
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2000, 62 : 77 - 87
  • [8] A MCMC-method for models with continuous latent responses
    Maris, G
    Maris, E
    [J]. PSYCHOMETRIKA, 2002, 67 (03) : 335 - 350
  • [9] A MCMC-method for models with continuous latent responses
    Gunter Maris
    Eric Maris
    [J]. Psychometrika, 2002, 67 : 335 - 350
  • [10] The Geometry of Continuous Latent Space Models for Network Data
    Smith, Anna L.
    Asta, Dena M.
    Calder, Catherine A.
    [J]. STATISTICAL SCIENCE, 2019, 34 (03) : 428 - 453