Faster MCMC for Gaussian latent position network models

被引:1
|
作者
Spencer, Neil A. [1 ]
Junker, Brian W. [2 ]
Sweet, Tracy M. [3 ]
机构
[1] Harvard Univ, Boston, MA 02115 USA
[2] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA
[3] Univ Maryland, College Pk, MD 20742 USA
基金
美国国家科学基金会; 加拿大自然科学与工程研究理事会;
关键词
Hamiltonian Monte Carlo; network data; firefly Monte Carlo; latent space model; longitudinal network data; Bayesian computation; HAMILTONIAN MONTE-CARLO; INFERENCE;
D O I
10.1017/nws.2022.1
中图分类号
O1 [数学]; C [社会科学总论];
学科分类号
03 ; 0303 ; 0701 ; 070101 ;
摘要
Latent position network models are a versatile tool in network science; applications include clustering entities, controlling for causal confounders, and defining priors over unobserved graphs. Estimating each node's latent position is typically framed as a Bayesian inference problem, with Metropolis within Gibbs being the most popular tool for approximating the posterior distribution. However, it is well-known that Metropolis within Gibbs is inefficient for large networks; the acceptance ratios are expensive to compute, and the resultant posterior draws are highly correlated. In this article, we propose an alternative Markov chain Monte Carlo strategy-defined using a combination of split Hamiltonian Monte Carlo and Firefly Monte Carlo-that leverages the posterior distribution's functional form for more efficient posterior computation. We demonstrate that these strategies outperform Metropolis within Gibbs and other algorithms on synthetic networks, as well as on real information-sharing networks of teachers and staff in a school district.
引用
收藏
页码:20 / 45
页数:26
相关论文
共 50 条
  • [1] LGM Split Sampler: An Efficient MCMC Sampling Scheme for Latent Gaussian Models
    Geirsson, Oli Pall
    Hrafnkelsson, Birgir
    Simpson, Daniel
    Sigurdarson, Helgi
    [J]. STATISTICAL SCIENCE, 2020, 35 (02) : 218 - 233
  • [2] LEARNABILITY OF LATENT POSITION NETWORK MODELS
    Choi, David S.
    Wolfe, Patrick J.
    [J]. 2011 IEEE STATISTICAL SIGNAL PROCESSING WORKSHOP (SSP), 2011, : 521 - 524
  • [3] PROJECTIVE, SPARSE AND LEARNABLE LATENT POSITION NETWORK MODELS
    Spencer, Neil A.
    Shalizi, Cosma Rohilla
    [J]. ANNALS OF STATISTICS, 2023, 51 (06): : 2506 - 2525
  • [4] Computationally efficient inference for latent position network models
    Rastelli, Riccardo
    Maire, Florian
    Friel, Nial
    [J]. ELECTRONIC JOURNAL OF STATISTICS, 2024, 18 (01): : 2531 - 2570
  • [5] MCMC maximum likelihood for latent state models
    Jacquier, Eric
    Johannes, Michael
    Polson, Nicholas
    [J]. JOURNAL OF ECONOMETRICS, 2007, 137 (02) : 615 - 640
  • [6] A MCMC-method for models with continuous latent responses
    Gunter Maris
    Eric Maris
    [J]. Psychometrika, 2002, 67 : 335 - 350
  • [7] A MCMC-method for models with continuous latent responses
    Maris, G
    Maris, E
    [J]. PSYCHOMETRIKA, 2002, 67 (03) : 335 - 350
  • [8] An alternative class of models to position social network groups in latent spaces
    Nolau, Izabel
    Ferreira, Gustavo S.
    [J]. BRAZILIAN JOURNAL OF PROBABILITY AND STATISTICS, 2022, 36 (02) : 263 - 286
  • [9] What are the advantages of MCMC based inference in latent variable models?
    Paap, R
    [J]. STATISTICA NEERLANDICA, 2002, 56 (01) : 2 - 22
  • [10] Approximate Marginals in Latent Gaussian Models
    Cseke, Botond
    Heskes, Tom
    [J]. JOURNAL OF MACHINE LEARNING RESEARCH, 2011, 12 : 417 - 454