On Estimation of Hurst Parameter Under Noisy Observations

被引:8
|
作者
Liu, Guangying [1 ]
Jing, Bing-Yi [2 ]
机构
[1] Nanjing Audit Univ, Dept Stat, Nanjing, Jiangsu, Peoples R China
[2] Hong Kong Univ Sci & Technol, Dept Math, Hong Kong, Peoples R China
关键词
Central limit theorem; Fractional Brownian motion; High-frequency data; Noisy data; Realized power variation; LONG-RANGE DEPENDENCE; MICROSTRUCTURE NOISE; SEMIPARAMETRIC ESTIMATION; STOCHASTIC VOLATILITY; MEMORY; FREQUENCY; ARBITRAGE;
D O I
10.1080/07350015.2016.1191503
中图分类号
F [经济];
学科分类号
02 ;
摘要
It is widely accepted that some financial data exhibit long memory or long dependence, and that the observed data usually possess noise. In the continuous time situation, the factional Brownian motion B-H and its extension are an important class of models to characterize the long memory or short memory of data, and Hurst parameter H is an index to describe the degree of dependence. In this article, we estimate the Hurst parameter of a discretely sampled fractional integral process corrupted by noise. We use the preaverage method to diminish the impact of noise, employ the filter method to exclude the strong dependence, and obtain the smoothed data, and estimate the Hurst parameter by the smoothed data. The asymptotic properties such as consistency and asymptotic normality of the estimator are established. Simulations for evaluating the performance of the estimator are conducted. Supplementary materials for this article are available online.
引用
收藏
页码:483 / 492
页数:10
相关论文
共 50 条
  • [21] HURST PARAMETER ESTIMATION FOR EPILEPTIC SEIZURE DETECTION
    Osorio, Ivan
    Frei, Mark G.
    [J]. COMMUNICATIONS IN INFORMATION AND SYSTEMS, 2007, 7 (02) : 167 - 176
  • [22] On parameter estimation of stochastic delay differential equations with guaranteed accuracy by noisy observations
    Kuechler, Uwe
    Vasil'iev, Vyacheslav A.
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2007, 137 (09) : 3007 - 3023
  • [23] Estimation of the Hurst exponent from noisy data: a Bayesian approach
    N. Makarava
    M. Holschneider
    [J]. The European Physical Journal B, 2012, 85
  • [24] Estimation of the Hurst exponent from noisy data: a Bayesian approach
    Makarava, N.
    Holschneider, M.
    [J]. EUROPEAN PHYSICAL JOURNAL B, 2012, 85 (08):
  • [25] Ultimate precision of joint parameter estimation under noisy Gaussian environment
    Bakmou, Lahcen
    Daoud, Mohammed
    [J]. PHYSICS LETTERS A, 2022, 428
  • [26] Parameter estimation for fractional Ornstein–Uhlenbeck processes of general Hurst parameter
    Yaozhong Hu
    David Nualart
    Hongjuan Zhou
    [J]. Statistical Inference for Stochastic Processes, 2019, 22 : 111 - 142
  • [27] Hurst Parameter Estimation Using Artificial Neural Networks
    Ledesma-Orozco, S.
    Ruiz-Pinales, J.
    Garcia-Hernandez, G.
    Cerda-Villafana, G.
    Hernandez-Fusilier, D.
    [J]. JOURNAL OF APPLIED RESEARCH AND TECHNOLOGY, 2011, 9 (02) : 227 - 241
  • [28] Optimal estimation of the rough Hurst parameter in additive noise
    Szymanski, Gregoire
    [J]. STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2024, 170
  • [29] Bayesian estimation of the Hurst parameter of fractional Brownian motion
    Chen, Chen-Yueh
    Shafie, Khalil
    Lin, Yen-Kuang
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2017, 46 (06) : 4760 - 4766
  • [30] Comparative Studies of Methods for Accurate Hurst Parameter Estimation
    Kulikovs, M.
    Sharkovsky, S.
    Petersons, E.
    [J]. ELEKTRONIKA IR ELEKTROTECHNIKA, 2010, (07) : 113 - 116