Equation of state of MgSiO3 with the perovskite structure based on experimental measurement

被引:0
|
作者
Saxena, SK [1 ]
Dubrovinsky, LS
Tutti, F
Le Bihan, T
机构
[1] Uppsala Univ, Dept Earth Sci, S-75236 Uppsala, Sweden
[2] European Synchrotron Radiat Facil, F-38043 Grenoble, France
关键词
D O I
暂无
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
We studied MgSiO3 with the perovskite structure heated to temperatures up to 1500 K at pressures between 36 and 110 GPa with in-situ X-ray diffraction. The new pressure-volume-temperature (P-V-T) data were combined with literature data. to provide thermal expansivity a and compressibility beta against T (in K): alpha(r) = 2.71 x 10(-5) + 1.80 x 10(-9) T - 1.48 T-2 (Model 1) or alpha(r) = 2.13 x 10(-5) + 7.57 x 10(-9) T - 1.02 T-2 (Model 2), and beta(1) = 3.735 x 10(-7) + 3.27 x 10(-11) T + 6.60 x 10(-15) T-2. Model 1 yields physical properties of perovskite that confirm Anderson's (1998) Debye approach; the model is valid for extrapolation to 3000 K or more. The parameters at 300 K are: alpha = 1.1 x 10?, K-o (bulk modulus) = 261 GPa, K-o' = 4 and (partial derivative K/partial derivative T)(P) = -0.027. Thermal expansivity from this model does not fit the data of Funamori et al. (1996) at high temperature for P = 25 GPa. Model 2 uses an equation for a based on the data of Funamori et al. (1996), fits the available experimental data closely, and maintains conformity with Anderson's Debye approach. Heat capacity, C-P, data for perovskite is given by either: C-P = 110.8 +/- 8.031 x 10(-3) T - 1.302 x 10(-7) T-2 - 1.647 x 10(7) T-2 + 2.755 x 10(9) T-3 + 267.5 T-0.5 + 9287 T-1 (Model 1) or C-P = 121.33 + 2.77 x 10(-3) T - 2.585 x 10(6) T-2 - 1.710 x 10(7) T + 2.792 x 10(9) T-3 - 169 T-0.5 + 15782 T-1 (Model 2).
引用
收藏
页码:226 / 232
页数:7
相关论文
共 50 条
  • [41] The mechanism of solution of aluminum oxide in MgSiO3 perovskite
    Stebbins, JF
    Kroeker, S
    Andrault, D
    GEOPHYSICAL RESEARCH LETTERS, 2001, 28 (04) : 615 - 618
  • [42] ELASTICITY OF MGSIO3 PEROVSKITE AND CHEMISTRY OF THE LOWER MANTLE
    WEIDNER, DJ
    YEGANEHHAERI, A
    CHEMICAL GEOLOGY, 1988, 70 (1-2) : 64 - 64
  • [43] MOLECULAR-DYNAMICS STUDY OF MGSIO3 PEROVSKITE
    MATSUI, M
    PHYSICS AND CHEMISTRY OF MINERALS, 1988, 16 (03) : 234 - 238
  • [44] Experimental and theoretical thermal equations of state of MgSiO3 post-perovskite at multi-megabar pressures
    Sakai, Takeshi
    Dekura, Haruhiko
    Hirao, Naohisa
    SCIENTIFIC REPORTS, 2016, 6
  • [45] Analysis of compressibility and thermal expansivity for MgSiO3 perovskite
    Meenakshi, S
    Sharma, BS
    INDIAN JOURNAL OF PURE & APPLIED PHYSICS, 1999, 37 (11) : 818 - 822
  • [46] MgSiO3 Post-perovskite at D" Conditions
    Wentzcovitch, Renata M.
    Tsuchiya, Taku
    Tsuchiya, Jun
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2005, 61 : C55 - C55
  • [47] ISOTHERMAL COMPRESSION OF PEROVSKITE-TYPE MGSIO3
    YAGI, T
    MAO, HK
    BELL, PM
    TRANSACTIONS-AMERICAN GEOPHYSICAL UNION, 1978, 59 (04): : 373 - 373
  • [48] Dynamical and elastic properties of MgSiO3 perovskite (bridgmanite)
    Wehinger, Bjoern
    Bosak, Alexei
    Nazzareni, Sabrina
    Antonangeli, Daniele
    Mirone, Alessandro
    Chaplot, Samrath Lal
    Mittal, Ranjan
    Ohtani, Eiji
    Shatskiy, Anton
    Saxena, Surendra
    Ghose, Subrata
    Krisch, Michael
    GEOPHYSICAL RESEARCH LETTERS, 2016, 43 (06) : 2568 - 2575
  • [49] P-V-T equation of state of MgSiO3 perovskite and MgO periclase:: Implication for lower mantle composition
    Aizawa, Y
    Yoneda, A
    PHYSICS OF THE EARTH AND PLANETARY INTERIORS, 2006, 155 (1-2) : 87 - 95
  • [50] Sound velocity of MgSiO3 perovskite to Mbar pressure
    Murakami, Motohiko
    Sinogeikin, Stanislav V.
    Hellwig, Holger
    Bass, Jay D.
    Li, Jie
    EARTH AND PLANETARY SCIENCE LETTERS, 2007, 256 (1-2) : 47 - 54