Equation of state of MgSiO3 with the perovskite structure based on experimental measurement

被引:0
|
作者
Saxena, SK [1 ]
Dubrovinsky, LS
Tutti, F
Le Bihan, T
机构
[1] Uppsala Univ, Dept Earth Sci, S-75236 Uppsala, Sweden
[2] European Synchrotron Radiat Facil, F-38043 Grenoble, France
关键词
D O I
暂无
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
We studied MgSiO3 with the perovskite structure heated to temperatures up to 1500 K at pressures between 36 and 110 GPa with in-situ X-ray diffraction. The new pressure-volume-temperature (P-V-T) data were combined with literature data. to provide thermal expansivity a and compressibility beta against T (in K): alpha(r) = 2.71 x 10(-5) + 1.80 x 10(-9) T - 1.48 T-2 (Model 1) or alpha(r) = 2.13 x 10(-5) + 7.57 x 10(-9) T - 1.02 T-2 (Model 2), and beta(1) = 3.735 x 10(-7) + 3.27 x 10(-11) T + 6.60 x 10(-15) T-2. Model 1 yields physical properties of perovskite that confirm Anderson's (1998) Debye approach; the model is valid for extrapolation to 3000 K or more. The parameters at 300 K are: alpha = 1.1 x 10?, K-o (bulk modulus) = 261 GPa, K-o' = 4 and (partial derivative K/partial derivative T)(P) = -0.027. Thermal expansivity from this model does not fit the data of Funamori et al. (1996) at high temperature for P = 25 GPa. Model 2 uses an equation for a based on the data of Funamori et al. (1996), fits the available experimental data closely, and maintains conformity with Anderson's Debye approach. Heat capacity, C-P, data for perovskite is given by either: C-P = 110.8 +/- 8.031 x 10(-3) T - 1.302 x 10(-7) T-2 - 1.647 x 10(7) T-2 + 2.755 x 10(9) T-3 + 267.5 T-0.5 + 9287 T-1 (Model 1) or C-P = 121.33 + 2.77 x 10(-3) T - 2.585 x 10(6) T-2 - 1.710 x 10(7) T + 2.792 x 10(9) T-3 - 169 T-0.5 + 15782 T-1 (Model 2).
引用
收藏
页码:226 / 232
页数:7
相关论文
共 50 条
  • [21] Direct shock wave loading of MgSiO3 perovskite to lower mantle conditions and its equation of state
    Deng, Liwei
    Gong, Zizheng
    Fei, Yingwei
    PHYSICS OF THE EARTH AND PLANETARY INTERIORS, 2008, 170 (3-4) : 210 - 214
  • [22] LATTICE-DYNAMICS OF MGSIO3 PEROVSKITE
    CHOUDHURY, N
    CHAPLOT, SL
    RAO, KR
    GHOSE, S
    PRAMANA, 1988, 30 (05) : 423 - 428
  • [23] CRYSTAL-GROWTH OF MGSIO3 PEROVSKITE
    ITO, E
    WEIDNER, DJ
    GEOPHYSICAL RESEARCH LETTERS, 1986, 13 (05) : 464 - 466
  • [24] A COMPUTER-SIMULATION OF THE STRUCTURE AND ELASTIC PROPERTIES OF MGSIO3 PEROVSKITE
    WALL, A
    PRICE, GD
    PARKER, SC
    MINERALOGICAL MAGAZINE, 1986, 50 (358) : 693 - 707
  • [25] Molecular dynamics of MgSiO3 perovskite melting
    Liu, ZJ
    Cheng, XL
    Yang, XD
    Zhang, H
    Cai, LC
    CHINESE PHYSICS, 2006, 15 (01): : 224 - 228
  • [26] Stability of MgSiO3 perovskite in the lower mantle
    Shim, SH
    EARTH'S DEEP MANTLE: STRUCTURE, COMPOSITION, AND EVOLUTION, 2005, 160 : 261 - 282
  • [27] Oxygen ionic conduction in MgSiO3 perovskite
    Dobson, D
    PHYSICS OF THE EARTH AND PLANETARY INTERIORS, 2003, 139 (1-2) : 55 - 64
  • [28] STRUCTURE AND CRYSTAL-CHEMISTRY OF PEROVSKITE-TYPE MGSIO3
    YAGI, T
    MAO, HK
    BELL, PM
    PHYSICS AND CHEMISTRY OF MINERALS, 1978, 3 (02) : 97 - 110
  • [29] Simulated equations of sitate of MgSiO3 perovskite
    Liu, ZJ
    Cheng, XL
    Zhang, FP
    Yang, XD
    Guo, Y
    CHINESE JOURNAL OF CHEMICAL PHYSICS, 2006, 19 (01) : 65 - 68
  • [30] THERMAL-DIFFUSIVITY OF MGSIO3 PEROVSKITE
    OSAKO, M
    ITO, E
    GEOPHYSICAL RESEARCH LETTERS, 1991, 18 (02) : 239 - 242