Equation of state of MgSiO3 with the perovskite structure based on experimental measurement

被引:0
|
作者
Saxena, SK [1 ]
Dubrovinsky, LS
Tutti, F
Le Bihan, T
机构
[1] Uppsala Univ, Dept Earth Sci, S-75236 Uppsala, Sweden
[2] European Synchrotron Radiat Facil, F-38043 Grenoble, France
关键词
D O I
暂无
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
We studied MgSiO3 with the perovskite structure heated to temperatures up to 1500 K at pressures between 36 and 110 GPa with in-situ X-ray diffraction. The new pressure-volume-temperature (P-V-T) data were combined with literature data. to provide thermal expansivity a and compressibility beta against T (in K): alpha(r) = 2.71 x 10(-5) + 1.80 x 10(-9) T - 1.48 T-2 (Model 1) or alpha(r) = 2.13 x 10(-5) + 7.57 x 10(-9) T - 1.02 T-2 (Model 2), and beta(1) = 3.735 x 10(-7) + 3.27 x 10(-11) T + 6.60 x 10(-15) T-2. Model 1 yields physical properties of perovskite that confirm Anderson's (1998) Debye approach; the model is valid for extrapolation to 3000 K or more. The parameters at 300 K are: alpha = 1.1 x 10?, K-o (bulk modulus) = 261 GPa, K-o' = 4 and (partial derivative K/partial derivative T)(P) = -0.027. Thermal expansivity from this model does not fit the data of Funamori et al. (1996) at high temperature for P = 25 GPa. Model 2 uses an equation for a based on the data of Funamori et al. (1996), fits the available experimental data closely, and maintains conformity with Anderson's Debye approach. Heat capacity, C-P, data for perovskite is given by either: C-P = 110.8 +/- 8.031 x 10(-3) T - 1.302 x 10(-7) T-2 - 1.647 x 10(7) T-2 + 2.755 x 10(9) T-3 + 267.5 T-0.5 + 9287 T-1 (Model 1) or C-P = 121.33 + 2.77 x 10(-3) T - 2.585 x 10(6) T-2 - 1.710 x 10(7) T + 2.792 x 10(9) T-3 - 169 T-0.5 + 15782 T-1 (Model 2).
引用
收藏
页码:226 / 232
页数:7
相关论文
共 50 条
  • [31] A QUANTUM-MECHANICAL STUDY OF THE PEROVSKITE STRUCTURE TYPE OF MGSIO3
    DARCO, P
    SANDRONE, G
    DOVESI, R
    ORLANDO, R
    SAUNDERS, VR
    PHYSICS AND CHEMISTRY OF MINERALS, 1993, 20 (06) : 407 - 414
  • [32] Molecular dynamics simulation of MgSiO3 perovskite
    Zhou, LX
    Hardy, JR
    Xu, X
    CHINESE PHYSICS LETTERS, 1998, 15 (06): : 444 - 446
  • [33] HEAT-CAPACITY OF MGSIO3 PEROVSKITE
    AKAOGI, M
    ITO, E
    GEOPHYSICAL RESEARCH LETTERS, 1993, 20 (02) : 105 - 108
  • [34] Simultaneous volume measurements of post-perovskite and perovskite in MgSiO3 and their thermal equations of state
    Komabayashi, Tetsuya
    Hirose, Kei
    Sugimura, Emiko
    Sata, Nagayoshi
    Ohishi, Yasuo
    Dubrovinsky, Leonid S.
    EARTH AND PLANETARY SCIENCE LETTERS, 2008, 265 (3-4) : 515 - 524
  • [35] EFFECT OF PRESSURE ON THE CRYSTAL-STRUCTURE OF PEROVSKITE-TYPE MGSIO3
    KUDOH, Y
    ITO, E
    TAKEDA, H
    PHYSICS AND CHEMISTRY OF MINERALS, 1987, 14 (04) : 350 - 354
  • [36] Thermodynamic properties of perovskite MgSiO3 with cubic structure under extreme conditions
    Nguyen, Hoc Quang
    Nguyen, Nhi Quynh
    Dao, Mai Thi
    Tran, Vien Cong
    Lai, Tra Thi Thu
    Van Le, Anh Thi
    Nguyen, An Thi Thuy
    European Physical Journal B, 2024, 97 (10):
  • [37] Molecular dynamics simulation of phase transitions and melting in MgSiO3 with the perovskite structure
    Chaplot, SL
    Choudhury, N
    Rao, KR
    AMERICAN MINERALOGIST, 1998, 83 (9-10) : 937 - 941
  • [38] Experimental and theoretical thermal equations of state of MgSiO3 post-perovskite at multi-megabar pressures
    Takeshi Sakai
    Haruhiko Dekura
    Naohisa Hirao
    Scientific Reports, 6
  • [39] Post-perovskite phase transition in MgSiO3
    Murakami, M
    Hirose, K
    Kawamura, K
    Sata, N
    Ohishi, Y
    SCIENCE, 2004, 304 (5672) : 855 - 858
  • [40] DFT study of migration enthalpies in MgSiO3 perovskite
    M. W. Ammann
    J. P. Brodholt
    D. P. Dobson
    Physics and Chemistry of Minerals, 2009, 36 : 151 - 158