Local approximations for maximum partial subgraph problem

被引:0
|
作者
Monnot, J [1 ]
Paschos, VT [1 ]
Toulouse, S [1 ]
机构
[1] Univ Paris 09, LAMSADE, F-75775 Paris 16, France
关键词
approximation algorithms; local search; APX-complete; maximum subgraph problem; minimum vertex deletion problem; hereditary property;
D O I
10.1016/j.orl.2003.08.004
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We deal with MAX H-0-FREE PARTIAL SUBGRAPH. We mainly prove that 3-locally optimum solutions achieve approximation ratio (delta(0) + 1)/(B + 2 + nu(0)), where B = max(nuis an element ofV)dG(nu), delta(0) = min(nuis an element ofV(H0))d(H0)(nu) and nu(0) = (\V(H-0)\ + 1)/delta(0). Next, we show that this ratio rises up to 3/(B + 1) when H-0 = K-3. Finally, we provide hardness results for MAX K-3-FREE PARTIAL SUBGRAPH. (C) 2003 Elsevier B.V. All rights reserved.
引用
收藏
页码:217 / 224
页数:8
相关论文
共 50 条
  • [41] Maximum balanced subgraph problem parameterized above lower bound
    Crowston, R.
    Gutin, G.
    Jones, M.
    Muciaccia, G.
    THEORETICAL COMPUTER SCIENCE, 2013, 513 : 53 - 64
  • [42] THE MAXIMUM K-COLORABLE SUBGRAPH PROBLEM FOR CHORDAL GRAPHS
    YANNAKAKIS, M
    GAVRIL, F
    INFORMATION PROCESSING LETTERS, 1987, 24 (02) : 133 - 137
  • [43] Maximum h-colourable subgraph problem in balanced graphs
    Dahlhaus, E
    Manuel, PD
    Miller, M
    INFORMATION PROCESSING LETTERS, 1998, 65 (06) : 301 - 303
  • [44] Heuristics for the Maximum 2-Layer RAC Subgraph Problem
    Di Giacomo, Emilio
    Didimo, Walter
    Grilli, Luca
    Liotta, Giuseppe
    Romeo, Salvatore Agostino
    COMPUTER JOURNAL, 2015, 58 (05): : 1085 - 1098
  • [45] BRANCH-AND-BOUND TECHNIQUES FOR THE MAXIMUM PLANAR SUBGRAPH PROBLEM
    CIMIKOWSKI, RJ
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 1994, 53 (3-4) : 135 - 147
  • [46] The Maximum k-Colorable Subgraph Problem and Related Problems
    Kuryatnikova, Olga
    Sotirov, Renata
    Vera, Juan C.
    INFORMS JOURNAL ON COMPUTING, 2022, 34 (01) : 656 - +
  • [47] Limits of Greedy Approximation Algorithms for the Maximum Planar Subgraph Problem
    Chimani, Markus
    Hedtke, Ivo
    Wiedera, Tilo
    Combinatorial Algorithms, 2016, 9843 : 334 - 346
  • [48] A linear programming formulation for the maximum complete multipartite subgraph problem
    Denis Cornaz
    Mathematical Programming, 2006, 105 : 329 - 344
  • [49] The maximum acyclic subgraph problem and degree-3 graphs
    Newman, A
    APPROXIMATION, RANDOMIZATION, AND COMBINATORIAL OPTIMIZATION: ALGORITHMS AND TECHNIQUES, 2001, 2129 : 147 - 158
  • [50] Recursive-Parallel Algorithm for Solving the Maximum Common Subgraph Problem
    V. V. Vasilchikov
    Automatic Control and Computer Sciences, 2024, 58 (7) : 827 - 835