Local approximations for maximum partial subgraph problem

被引:0
|
作者
Monnot, J [1 ]
Paschos, VT [1 ]
Toulouse, S [1 ]
机构
[1] Univ Paris 09, LAMSADE, F-75775 Paris 16, France
关键词
approximation algorithms; local search; APX-complete; maximum subgraph problem; minimum vertex deletion problem; hereditary property;
D O I
10.1016/j.orl.2003.08.004
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We deal with MAX H-0-FREE PARTIAL SUBGRAPH. We mainly prove that 3-locally optimum solutions achieve approximation ratio (delta(0) + 1)/(B + 2 + nu(0)), where B = max(nuis an element ofV)dG(nu), delta(0) = min(nuis an element ofV(H0))d(H0)(nu) and nu(0) = (\V(H-0)\ + 1)/delta(0). Next, we show that this ratio rises up to 3/(B + 1) when H-0 = K-3. Finally, we provide hardness results for MAX K-3-FREE PARTIAL SUBGRAPH. (C) 2003 Elsevier B.V. All rights reserved.
引用
收藏
页码:217 / 224
页数:8
相关论文
共 50 条
  • [31] Parameterized and Approximation Algorithms for the Maximum Bimodal Subgraph Problem
    Didimo, Walter
    Fomin, Fedor V.
    Golovach, Petr A.
    Inamdar, Tanmay
    Kobourov, Stephen
    Sieper, Marie Diana
    GRAPH DRAWING AND NETWORK VISUALIZATION, GD 2023, PT II, 2023, 14466 : 189 - 202
  • [32] Breakout Local Search for Heaviest Subgraph Problem
    Zheng, He
    Hao, Jin-Kao
    METAHEURISTICS, MIC 2024, PT I, 2024, 14753 : 3 - 8
  • [33] Approximating the maximum common subgraph isomorphism problem with a weighted graph
    Chen, Alan Chia-Lung
    Elhajj, Ahmed
    Gao, Shang
    Sarhan, Abdullah
    Afra, Salim
    Kassem, Ahmad
    Alhajj, Reda
    KNOWLEDGE-BASED SYSTEMS, 2015, 85 : 265 - 276
  • [34] Approximating the maximum 3-edge-colorable subgraph problem
    Rizzi, Romeo
    DISCRETE MATHEMATICS, 2009, 309 (12) : 4166 - 4170
  • [35] Online algorithms for the maximum k-colorable subgraph problem
    Hertz, Alain
    Montagne, Romain
    Gagnon, Francois
    COMPUTERS & OPERATIONS RESEARCH, 2018, 91 : 209 - 224
  • [36] Relaxation and Matrix Randomized Rounding for the Maximum Spectral Subgraph Problem
    Bazgan, Cristina
    Beaujean, Paul
    Gourdin, Eric
    COMBINATORIAL OPTIMIZATION AND APPLICATIONS (COCOA 2018), 2018, 11346 : 108 - 122
  • [37] A linear programming formulation for the maximum complete multipartite subgraph problem
    Cornaz, D
    MATHEMATICAL PROGRAMMING, 2006, 105 (2-3) : 329 - 344
  • [38] Two new approximation algorithms for the maximum planar subgraph problem
    Department of Computer Sciences, University of Tampere, P.O. Box 607, FIN-33014, Tampere, Finland
    Acta Cybern, 2008, 3 (503-527):
  • [39] Two New Approximation Algorithms for the Maximum Planar Subgraph Problem
    Poranen, Timo
    ACTA CYBERNETICA, 2008, 18 (03): : 503 - 527
  • [40] THE PARALLEL COMPLEXITY OF APPROXIMATION ALGORITHMS FOR THE MAXIMUM ACYCLIC SUBGRAPH PROBLEM
    GREENLAW, R
    MATHEMATICAL SYSTEMS THEORY, 1992, 25 (03): : 161 - 175