Maximum h-colourable subgraph problem in balanced graphs

被引:24
|
作者
Dahlhaus, E
Manuel, PD
Miller, M [1 ]
机构
[1] Univ Newcastle, Dept Comp Sci, Newcastle, NSW 2308, Australia
[2] Univ Bonn, Basser Dept comp Sci 5, D-5300 Bonn, Germany
关键词
balanced graph; strongly chordal graph; balanced matrix; totally balanced matrix; k-fold clique transversal problem; maximum h-colourable subgraph problem;
D O I
10.1016/S0020-0190(98)00019-2
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The k-fold clique transversal problem is to locate a minimum set Omega of vertices of a graph such that every maximal clique has at least k elements of Omega. The maximum h-colourable subgraph problem is to find a maximum subgraph of a graph which is h-colourable. We show that the k-fold clique transversal problem and the maximum h-colourable subgraph problem are polynomially solvable on balanced graphs. We also provide a polynomial algorithm to recognize balanced graphs. (C) 1998 Elsevier Science B.V.
引用
收藏
页码:301 / 303
页数:3
相关论文
共 50 条
  • [1] Sparse H-colourable graphs of bounded maximum degree
    Hajiabolhassan, H
    Zhu, XD
    GRAPHS AND COMBINATORICS, 2004, 20 (01) : 65 - 71
  • [2] Sparse H-Colourable Graphs of Bounded Maximum Degree
    Hossein Hajiabolhassan
    Xuding Zhu
    Graphs and Combinatorics, 2004, 20 : 65 - 71
  • [3] Universal H-Colourable Graphs
    Izak Broere
    Johannes Heidema
    Graphs and Combinatorics, 2013, 29 : 1193 - 1206
  • [4] Universal H-Colourable Graphs
    Broere, Izak
    Heidema, Johannes
    GRAPHS AND COMBINATORICS, 2013, 29 (05) : 1193 - 1206
  • [5] The Complexity of 3-Colouring H-Colourable Graphs
    Krokhin, Andrei
    Oprsal, Jakub
    2019 IEEE 60TH ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE (FOCS 2019), 2019, : 1227 - 1239
  • [6] Maximum H-colourable subdigraphs and constraint optimization with arbitrary weights
    Jonsson, Peter
    Krokhin, Andrei
    JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 2007, 73 (05) : 691 - 702
  • [7] The balanced connected subgraph problem for geometric intersection graphs
    Bhore, Sujoy
    Jana, Satyabrata
    Pandit, Supantha
    Roy, Sasanka
    THEORETICAL COMPUTER SCIENCE, 2022, 929 (69-80) : 69 - 80
  • [8] Maximum balanced subgraph problem parameterized above lower bound
    Crowston, R.
    Gutin, G.
    Jones, M.
    Muciaccia, G.
    THEORETICAL COMPUTER SCIENCE, 2013, 513 : 53 - 64
  • [9] THE MAXIMUM K-COLORABLE SUBGRAPH PROBLEM FOR CHORDAL GRAPHS
    YANNAKAKIS, M
    GAVRIL, F
    INFORMATION PROCESSING LETTERS, 1987, 24 (02) : 133 - 137
  • [10] The maximum acyclic subgraph problem and degree-3 graphs
    Newman, A
    APPROXIMATION, RANDOMIZATION, AND COMBINATORIAL OPTIMIZATION: ALGORITHMS AND TECHNIQUES, 2001, 2129 : 147 - 158