Concavity in Fractional Calculus

被引:4
|
作者
Eloe, Paul W. [1 ]
Neugebauer, Jeffrey T. [2 ]
机构
[1] Univ Dayton, Dayton, OH 45469 USA
[2] Eastern Kentucky Univ, Richmond, KY 40475 USA
关键词
Fractional derivatives; concavity;
D O I
10.2298/FIL1809123E
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We discuss a concavity like property for functions u satisfying D-0(+alpha) u is an element of 2 C[0; b] with u(0) = 0 and -D-0+(alpha) u(t) >= 0 for all t is an element of [0; b]. We develop the property for alpha 2 (1; 2], where D-0+(alpha) is the standard RiemannLiouville fractional derivative. We observe the property is also valid in the case alpha = 1. Finally, we show that under certain conditions, -D-0+(alpha) u(t) >= 0 implies u is concave in the classical sense.
引用
下载
收藏
页码:3123 / 3128
页数:6
相关论文
共 50 条
  • [11] A CONTRIBUTION TO FRACTIONAL CALCULUS
    NAKHUSHEV, AM
    DIFFERENTIAL EQUATIONS, 1988, 24 (02) : 239 - 247
  • [12] Theory of Fractional Calculus
    Altai, Abdulhameed Qahtan Abbood
    IAENG International Journal of Applied Mathematics, 2022, 52 (03)
  • [13] ZEROS IN FRACTIONAL CALCULUS
    BOER, FJD
    AMERICAN MATHEMATICAL MONTHLY, 1976, 83 (05): : 386 - 387
  • [14] Fractional calculus for distributions
    Hilfer, R.
    Kleiner, T.
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2024, 27 (05) : 2063 - 2123
  • [15] On fractional Hahn calculus
    Brikshavana, Tanapat
    Sitthiwirattham, Thanin
    ADVANCES IN DIFFERENCE EQUATIONS, 2017,
  • [16] Complexity and the Fractional Calculus
    Pramukkul, Pensri
    Svenkeson, Adam
    Grigolini, Paolo
    Bologna, Mauro
    West, Bruce
    ADVANCES IN MATHEMATICAL PHYSICS, 2013, 2013
  • [17] WEYL FRACTIONAL CALCULUS
    RAINA, RK
    KOUL, CL
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1979, 73 (02) : 188 - 192
  • [18] Fractional calculus in pharmacokinetics
    Sopasakis, Pantelis
    Sarimveis, Haralambos
    Macheras, Panos
    Dokoumetzidis, Aristides
    JOURNAL OF PHARMACOKINETICS AND PHARMACODYNAMICS, 2018, 45 (01) : 107 - 125
  • [19] Tempered fractional calculus
    Sabzikar, Farzad
    Meerschaert, Mark M.
    Chen, Jinghua
    JOURNAL OF COMPUTATIONAL PHYSICS, 2015, 293 : 14 - 28
  • [20] The Chronicles of Fractional Calculus
    J. A. Tenreiro Machado
    Virginia Kiryakova
    Fractional Calculus and Applied Analysis, 2017, 20 : 307 - 336