Concavity in Fractional Calculus

被引:4
|
作者
Eloe, Paul W. [1 ]
Neugebauer, Jeffrey T. [2 ]
机构
[1] Univ Dayton, Dayton, OH 45469 USA
[2] Eastern Kentucky Univ, Richmond, KY 40475 USA
关键词
Fractional derivatives; concavity;
D O I
10.2298/FIL1809123E
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We discuss a concavity like property for functions u satisfying D-0(+alpha) u is an element of 2 C[0; b] with u(0) = 0 and -D-0+(alpha) u(t) >= 0 for all t is an element of [0; b]. We develop the property for alpha 2 (1; 2], where D-0+(alpha) is the standard RiemannLiouville fractional derivative. We observe the property is also valid in the case alpha = 1. Finally, we show that under certain conditions, -D-0+(alpha) u(t) >= 0 implies u is concave in the classical sense.
引用
收藏
页码:3123 / 3128
页数:6
相关论文
共 50 条