Fractional calculus for distributions

被引:1
|
作者
Hilfer, R. [1 ]
Kleiner, T. [1 ]
机构
[1] Univ Stuttgart, ICP, Allmandring 3, D-70569 Stuttgart, Germany
关键词
Fractional calculus (primary); distributions; convolution; ALPHA-RELAXATION; DERIVATIVES; CONVOLUTION; INTEGRATION; EQUATIONS; HILFER; POWERS; SPACE;
D O I
10.1007/s13540-024-00306-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Fractional derivatives and integrals for measures and distributions are reviewed. The focus is on domains and co-domains for translation invariant fractional operators. Fractional derivatives and integrals interpreted as -convolution operators with power law kernels are found to have the largest domains of definition. As a result, extending domains from functions to distributions via convolution operators contributes to far reaching unifications of many previously existing definitions of fractional integrals and derivatives. Weyl fractional operators are thereby extended to distributions using the method of adjoints. In addition, discretized fractional calculus and fractional calculus of periodic distributions can both be formulated and understood in terms of -convolution.
引用
收藏
页码:2063 / 2123
页数:61
相关论文
共 50 条
  • [1] FRACTIONAL CALCULUS OF PERIODIC DISTRIBUTIONS
    Khan, Khaula N.
    Lamb, Wilson
    McBride, Adam C.
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2011, 14 (02) : 260 - 283
  • [2] Fractional calculus of periodic distributions
    Khaula N. Khan
    Wilson Lamb
    Adam C. McBride
    Fractional Calculus and Applied Analysis, 2011, 14 : 260 - 283
  • [3] Mellin Convolutions, Statistical Distributions and Fractional Calculus
    A. M. Mathai
    Fractional Calculus and Applied Analysis, 2018, 21 : 376 - 398
  • [4] MELLIN CONVOLUTIONS, STATISTICAL DISTRIBUTIONS AND FRACTIONAL CALCULUS
    Mathai, A. M.
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2018, 21 (02) : 376 - 398
  • [5] MATRIX-VARIATE STATISTICAL DISTRIBUTIONS AND FRACTIONAL CALCULUS
    Mathai, A. M.
    Haubold, H. J.
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2011, 14 (01) : 138 - 155
  • [6] CONVOLUTIONAL APPROACH TO FRACTIONAL CALCULUS FOR DISTRIBUTIONS OF SEVERAL VARIABLES
    Mincheva-Kaminska, Svetlana
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2016, 19 (02) : 441 - 462
  • [7] Matrix-variate statistical distributions and fractional calculus
    A. M. Mathai
    H. J. Haubold
    Fractional Calculus and Applied Analysis, 2011, 14 : 138 - 155
  • [8] On extremal domains and codomains for convolution of distributions and fractional calculus
    T. Kleiner
    R. Hilfer
    Monatshefte für Mathematik, 2022, 198 : 121 - 152
  • [9] On extremal domains and codomains for convolution of distributions and fractional calculus
    Kleiner, T.
    Hilfer, R.
    MONATSHEFTE FUR MATHEMATIK, 2022, 198 (01): : 121 - 152
  • [10] Convolutional Approach to Fractional Calculus for Distributions of Several Variables
    Svetlana Mincheva-Kaminska
    Fractional Calculus and Applied Analysis, 2016, 19 : 441 - 462