Fractional calculus for distributions

被引:1
|
作者
Hilfer, R. [1 ]
Kleiner, T. [1 ]
机构
[1] Univ Stuttgart, ICP, Allmandring 3, D-70569 Stuttgart, Germany
关键词
Fractional calculus (primary); distributions; convolution; ALPHA-RELAXATION; DERIVATIVES; CONVOLUTION; INTEGRATION; EQUATIONS; HILFER; POWERS; SPACE;
D O I
10.1007/s13540-024-00306-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Fractional derivatives and integrals for measures and distributions are reviewed. The focus is on domains and co-domains for translation invariant fractional operators. Fractional derivatives and integrals interpreted as -convolution operators with power law kernels are found to have the largest domains of definition. As a result, extending domains from functions to distributions via convolution operators contributes to far reaching unifications of many previously existing definitions of fractional integrals and derivatives. Weyl fractional operators are thereby extended to distributions using the method of adjoints. In addition, discretized fractional calculus and fractional calculus of periodic distributions can both be formulated and understood in terms of -convolution.
引用
收藏
页码:2063 / 2123
页数:61
相关论文
共 50 条
  • [31] Fractional calculus in the sky
    Baleanu, Dumitru
    Agarwal, Ravi P.
    ADVANCES IN DIFFERENCE EQUATIONS, 2021, 2021 (01)
  • [32] THERMODYNAMICS IN FRACTIONAL CALCULUS
    Meilanov, R. P.
    Magomedov, R. A.
    JOURNAL OF ENGINEERING PHYSICS AND THERMOPHYSICS, 2014, 87 (06) : 1521 - 1531
  • [33] ON HADAMARD FRACTIONAL CALCULUS
    Ma, Li
    Li, Changpin
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2017, 25 (03)
  • [34] The differentiability in the fractional calculus
    Ben Adda, F
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2001, 47 (08) : 5423 - 5428
  • [35] THE CHRONICLES OF FRACTIONAL CALCULUS
    Tenreiro Machado, J. A.
    Kiryakova, Virginia
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2017, 20 (02) : 307 - 336
  • [36] Concavity in Fractional Calculus
    Eloe, Paul W.
    Neugebauer, Jeffrey T.
    FILOMAT, 2018, 32 (09) : 3123 - 3128
  • [37] NOTE ON FRACTIONAL CALCULUS
    CARTWRIGHT, DI
    MCMULLEN, JR
    PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 1978, 21 (MAR) : 79 - 80
  • [38] On right fractional calculus
    Anastassiou, George A.
    CHAOS SOLITONS & FRACTALS, 2009, 42 (01) : 365 - 376
  • [39] Lattice fractional calculus
    Tarasov, Vasily E.
    APPLIED MATHEMATICS AND COMPUTATION, 2015, 257 : 12 - 33
  • [40] The differentiability in the fractional calculus
    Ben Adda, F
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1998, 326 (07): : 787 - 791