Evolutionary Multi-objective Optimization for Evolving Hierarchical Fuzzy System

被引:0
|
作者
Jarraya, Yosra [1 ]
Bouaziz, Souhir [1 ]
Alimi, Adel M. [1 ]
Abraham, Ajith [2 ,3 ]
机构
[1] Univ Sfax, REs Grp Intelligent Machines REGIM, Natl Sch Engn ENIS, BP 1173, Sfax 3038, Tunisia
[2] Machine Intelligence Res Labs, Auburn, WA USA
[3] VSB Tech Univ Ostrava, IT4Innovat, Ostrava, Czech Republic
关键词
Multi-Objective Extended Genetic Programming algorithm; Hierarchical Flexible Beta Fuzzy System; hybrid Bacterial Foraging Optimization Algorithm; feature selection; classification problems; GENETIC ALGORITHM; CLASSIFICATION;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, a Multi-Objective Extended Genetic Programming (MOEGP) algorithm is developed to evolve the structure of the Hierarchical Flexible Beta Fuzzy System (HFBFS). The proposed algorithm allows finding the best representation of the hierarchical fuzzy system while trying to attain the desired balance of accuracy/interpretability. Furthermore, the free parameters (Beta membership functions and the consequent parts of rules) encoded in the best structure are tuned by applying the hybrid Bacterial Foraging Optimization Algorithm (the hybrid BFOA). The proposed methodology interleaves both MOEGP and the hybrid BFOA for the structure and the parameter optimization respectively until a satisfactory HFBFS is found. The performance of the approach is evaluated using several classification datasets with low and high input dimensions. Results prove the superiority of our method as compared with other existing works.
引用
收藏
页码:3163 / 3170
页数:8
相关论文
共 50 条
  • [41] Multi-Objective Optimization of Hybrid Renewable Energy System Using an Enhanced Multi-Objective Evolutionary Algorithm
    Ming, Mengjun
    Wang, Rui
    Zha, Yabing
    Zhang, Tao
    ENERGIES, 2017, 10 (05)
  • [42] Continuously evolving dropout with multi-objective evolutionary optimisation
    Jiang, Pengcheng
    Xue, Yu
    Neri, Ferrante
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2023, 124
  • [43] Fuzzy Classification with Multi-objective Evolutionary Algorithms
    Jimenez, Fernando
    Sanchez, Gracia
    Sanchez, Jose F.
    Alcaraz, Jose M.
    HYBRID ARTIFICIAL INTELLIGENCE SYSTEMS, 2008, 5271 : 730 - 738
  • [44] A multi-objective evolutionary algorithm for fuzzy modeling
    Jiménez, F
    Gómez-Skarmeta, AF
    Roubos, H
    Babuska, R
    JOINT 9TH IFSA WORLD CONGRESS AND 20TH NAFIPS INTERNATIONAL CONFERENCE, PROCEEDINGS, VOLS. 1-5, 2001, : 1222 - 1228
  • [45] A Multi-objective Evolutionary Algorithm based on Decomposition for Constrained Multi-objective Optimization
    Martinez, Saul Zapotecas
    Coello, Carlos A. Coello
    2014 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2014, : 429 - 436
  • [46] An orthogonal multi-objective evolutionary algorithm for multi-objective optimization problems with constraints
    Zeng, SY
    Kang, LSS
    Ding, LXX
    EVOLUTIONARY COMPUTATION, 2004, 12 (01) : 77 - 98
  • [47] Fuzzy multi-objective fitness functions for dynamical system optimization
    Fang, XP
    Kellog, B
    Conlan, T
    Dickerson, J
    NAFIPS'2003: 22ND INTERNATIONAL CONFERENCE OF THE NORTH AMERICAN FUZZY INFORMATION PROCESSING SOCIETY - NAFIPS PROCEEDINGS, 2003, : 347 - 352
  • [48] A coordination method for fuzzy multi-objective optimization of system reliability
    Huang, HZ
    Wu, WD
    Liu, CS
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2005, 16 (03) : 213 - 220
  • [49] Evolving dynamic multi-objective optimization problems with objective replacement
    Guan, SU
    Chen, Q
    Mo, WT
    ARTIFICIAL INTELLIGENCE REVIEW, 2005, 23 (03) : 267 - 293
  • [50] Evolving Dynamic Multi-Objective Optimization Problems with Objective Replacement
    SHENG-UEI GUAN
    QIAN CHEN
    WENTING MO
    Artificial Intelligence Review, 2005, 23 : 267 - 293