Evolving Dynamic Multi-Objective Optimization Problems with Objective Replacement

被引:0
|
作者
SHENG-UEI GUAN
QIAN CHEN
WENTING MO
机构
[1] National University of Singapore,Department of Electrical and Computer Engineering
来源
关键词
multi-objective genetic algorithms; multi-objective problems; multi-objective optimization; non-stationary environment;
D O I
暂无
中图分类号
学科分类号
摘要
This paper studies the strategies for multi-objective optimization in a dynamic environment. In particular, we focus on problems with objective replacement, where some objectives may be replaced with new objectives during evolution. It is shown that the Pareto-optimal sets before and after the objective replacement share some common members. Based on this observation, we suggest the inheritance strategy. When objective replacement occurs, this strategy selects good chromosomes according to the new objective set from the solutions found before objective replacement, and then continues to optimize them via evolution for the new objective set. The experiment results showed that this strategy can help MOGAs achieve better performance than MOGAs without using the inheritance strategy, where the evolution is restarted when objective replacement occurs. More solutions with better quality are found during the same time span.
引用
下载
收藏
页码:267 / 293
页数:26
相关论文
共 50 条
  • [1] Evolving dynamic multi-objective optimization problems with objective replacement
    Guan, SU
    Chen, Q
    Mo, WT
    ARTIFICIAL INTELLIGENCE REVIEW, 2005, 23 (03) : 267 - 293
  • [2] Dynamic Distance Minimization Problems for dynamic Multi-objective Optimization
    Zille, Heiner
    Kottenhahn, Andre
    Mostaghim, Sanaz
    2017 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2017, : 952 - 959
  • [3] A Benchmark Generator for Dynamic Multi-objective Optimization Problems
    Jiang, Shouyong
    Yang, Shengxiang
    2014 14TH UK WORKSHOP ON COMPUTATIONAL INTELLIGENCE (UKCI), 2014, : 147 - 154
  • [4] Multi-objective boxing match algorithm for multi-objective optimization problems
    Tavakkoli-Moghaddam, Reza
    Akbari, Amir Hosein
    Tanhaeean, Mehrab
    Moghdani, Reza
    Gholian-Jouybari, Fatemeh
    Hajiaghaei-Keshteli, Mostafa
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 239
  • [5] Hyper multi-objective evolutionary algorithm for multi-objective optimization problems
    Guo, Weian
    Chen, Ming
    Wang, Lei
    Wu, Qidi
    SOFT COMPUTING, 2017, 21 (20) : 5883 - 5891
  • [6] Hyper multi-objective evolutionary algorithm for multi-objective optimization problems
    Weian Guo
    Ming Chen
    Lei Wang
    Qidi Wu
    Soft Computing, 2017, 21 : 5883 - 5891
  • [7] Hybrid Multi-Objective Genetic Algorithm for Multi-Objective Optimization Problems
    Zhang, Song
    Wang, Hongfeng
    Yang, Di
    Huang, Min
    2015 27TH CHINESE CONTROL AND DECISION CONFERENCE (CCDC), 2015, : 1970 - 1974
  • [8] A dynamic tri-population multi-objective evolutionary algorithm for constrained multi-objective optimization problems
    Yang, Yongkuan
    Yan, Bing
    Kong, Xiangsong
    EVOLUTIONARY INTELLIGENCE, 2024, 17 (04) : 2791 - 2806
  • [9] Modified Multi-Objective Particle Swarm Optimization Algorithm for Multi-objective Optimization Problems
    Qiao, Ying
    ADVANCES IN SWARM INTELLIGENCE, ICSI 2012, PT I, 2012, 7331 : 520 - 527
  • [10] A benchmark generator for online dynamic single-objective and multi-objective optimization problems
    Xiang, Xiaoshu
    Tian, Ye
    Cheng, Ran
    Zhang, Xingyi
    Yang, Shengxiang
    Jin, Yaochu
    INFORMATION SCIENCES, 2022, 613 : 591 - 608