Evolutionary Multi-objective Optimization for Evolving Hierarchical Fuzzy System

被引:0
|
作者
Jarraya, Yosra [1 ]
Bouaziz, Souhir [1 ]
Alimi, Adel M. [1 ]
Abraham, Ajith [2 ,3 ]
机构
[1] Univ Sfax, REs Grp Intelligent Machines REGIM, Natl Sch Engn ENIS, BP 1173, Sfax 3038, Tunisia
[2] Machine Intelligence Res Labs, Auburn, WA USA
[3] VSB Tech Univ Ostrava, IT4Innovat, Ostrava, Czech Republic
关键词
Multi-Objective Extended Genetic Programming algorithm; Hierarchical Flexible Beta Fuzzy System; hybrid Bacterial Foraging Optimization Algorithm; feature selection; classification problems; GENETIC ALGORITHM; CLASSIFICATION;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, a Multi-Objective Extended Genetic Programming (MOEGP) algorithm is developed to evolve the structure of the Hierarchical Flexible Beta Fuzzy System (HFBFS). The proposed algorithm allows finding the best representation of the hierarchical fuzzy system while trying to attain the desired balance of accuracy/interpretability. Furthermore, the free parameters (Beta membership functions and the consequent parts of rules) encoded in the best structure are tuned by applying the hybrid Bacterial Foraging Optimization Algorithm (the hybrid BFOA). The proposed methodology interleaves both MOEGP and the hybrid BFOA for the structure and the parameter optimization respectively until a satisfactory HFBFS is found. The performance of the approach is evaluated using several classification datasets with low and high input dimensions. Results prove the superiority of our method as compared with other existing works.
引用
收藏
页码:3163 / 3170
页数:8
相关论文
共 50 条
  • [21] An efficient multi-objective evolutionary fuzzy system for regression problems
    Marcelloni, F. (f.marcelloni@iet.unipi.it), 1600, Elsevier Inc. (54):
  • [22] An efficient multi-objective evolutionary fuzzy system for regression problems
    Antonelli, Michela
    Ducange, Pietro
    Marcelloni, Francesco
    INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 2013, 54 (09) : 1434 - 1451
  • [23] Hierarchical Flexible Beta Fuzzy Design by a Multi-Objective Evolutionary Hybrid Approach
    Jarraya, Yosra
    Bouaziz, Souhir
    Alimi, Adel M.
    IEEE ACCESS, 2018, 6 : 11544 - 11558
  • [24] Hierarchical multi-objective group optimization using fuzzy genetic algorithms
    Nojiri, H
    INTERNATIONAL CONFERENCE ON COMPUTING, COMMUNICATIONS AND CONTROL TECHNOLOGIES, VOL 3, PROCEEDINGS, 2004, : 92 - 97
  • [25] A Fuzzy Multi-objective Optimization Evolutionary Algorithm Incorporating Preference Information
    Shen, Xiaoning
    Li, Tao
    Zhang, Min
    2009 SECOND INTERNATIONAL SYMPOSIUM ON KNOWLEDGE ACQUISITION AND MODELING: KAM 2009, VOL 2, 2009, : 143 - 146
  • [26] A multi-objective evolutionary approach for nonlinear constrained optimization with fuzzy costs
    Jiménez, F
    Sánchez, G
    Cadenas, JM
    Gómez-Skarmeta, AF
    Verdegay, JL
    2004 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN & CYBERNETICS, VOLS 1-7, 2004, : 5771 - 5776
  • [27] Hyper multi-objective evolutionary algorithm for multi-objective optimization problems
    Guo, Weian
    Chen, Ming
    Wang, Lei
    Wu, Qidi
    SOFT COMPUTING, 2017, 21 (20) : 5883 - 5891
  • [28] Multi-Objective Factored Evolutionary Optimization and the Multi-Objective Knapsack Problem
    Peerlinck, Amy
    Sheppard, John
    2022 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2022,
  • [29] Hierarchical Multi-Objective Optimization of Automobile Seat Frame Based on Grey Fuzzy Logic System
    Wang, Wei
    Lan, Xiaojun
    Long, Jiangqi
    IEEE ACCESS, 2022, 10 : 35685 - 35700
  • [30] Hyper multi-objective evolutionary algorithm for multi-objective optimization problems
    Weian Guo
    Ming Chen
    Lei Wang
    Qidi Wu
    Soft Computing, 2017, 21 : 5883 - 5891