Parameterization and inference for nonparametric regression problems

被引:4
|
作者
Jiang, WX [1 ]
Kipnis, V
Midthune, D
Carroll, RJ
机构
[1] Northwestern Univ, Dept Stat, Evanston, IL 60208 USA
[2] NCI, Bethesda, MD 20892 USA
[3] Texas A&M Univ, College Stn, TX USA
关键词
asymptotic variance; attenuation; bias; biomarkers; breast cancer; correlation; generalized estimating equations; goodness-of-fit test; local estimating equations; measurement error; nonparametric regression; reparameterization; validation study; varying-coefficient models;
D O I
10.1111/1467-9868.00300
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider local likelihood or local estimating equations, in which a multivariate function Theta(.) is estimated but a derived function lambda(.) of Theta(.) is of interest. In many applications, when most naturally formulated the derived function is a non-linear function of Theta(.). In trying to understand whether the derived non-linear function is constant or linear, a problem arises with this approach: when the function is actually constant or linear, the expectation of the function estimate need not be constant or linear, at least to second order. In such circumstances, the simplest standard methods in nonparametric regression for testing whether a function is constant or linear cannot be applied. We develop a simple general solution which is applicable to nonparametric regression, varying-coefficient models, nonparametric generalized linear models, etc. We show that, in local linear kernel regression, inference about the derived function lambda(.) is facilitated without a loss of power by reparameterization so that lambda(.) is itself a component of Theta(.). Our approach is in contrast with the standard practice of choosing Theta(.) for convenience and allowing lambda(.) to be a non-linear function of Theta(.). The methods are applied to an important data set in nutritional epidemiology.
引用
收藏
页码:583 / 591
页数:9
相关论文
共 50 条
  • [1] ERROR INFERENCE FOR NONPARAMETRIC REGRESSION
    RUTHERFORD, B
    YAKOWITZ, S
    [J]. ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 1991, 43 (01) : 115 - 129
  • [2] Nonparametric inference on jump regression surface
    Jose, CT
    Ismail, B
    [J]. JOURNAL OF NONPARAMETRIC STATISTICS, 2001, 13 (06) : 791 - 813
  • [3] ON NONPARAMETRIC INFERENCE IN THE REGRESSION DISCONTINUITY DESIGN
    Kamat, Vishal
    [J]. ECONOMETRIC THEORY, 2018, 34 (03) : 694 - 703
  • [4] Statistical inference for nonparametric censored regression
    Mao, Guangcai
    Zhang, Jing
    [J]. STAT, 2021, 10 (01):
  • [5] Statistical inference on uncertain nonparametric regression model
    Ding, Jianhua
    Zhang, Zhiqiang
    [J]. FUZZY OPTIMIZATION AND DECISION MAKING, 2021, 20 (04) : 451 - 469
  • [6] AN ANALYSIS OF BAYESIAN-INFERENCE FOR NONPARAMETRIC REGRESSION
    COX, DD
    [J]. ANNALS OF STATISTICS, 1993, 21 (02): : 903 - 923
  • [7] Nonparametric inference on smoothed quantile regression process
    Hao, Meiling
    Lin, Yuanyuan
    Shen, Guohao
    Su, Wen
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2023, 179
  • [8] Regression-type inference in nonparametric autoregression
    Neumann, MH
    Kreiss, JP
    [J]. ANNALS OF STATISTICS, 1998, 26 (04): : 1570 - 1613
  • [9] Statistical inference on uncertain nonparametric regression model
    Jianhua Ding
    Zhiqiang Zhang
    [J]. Fuzzy Optimization and Decision Making, 2021, 20 : 451 - 469
  • [10] Nonparametric regression with multiple thresholds: Estimation and inference
    Chiou, Yan-Yu
    Chen, Mei-Yuan
    Chen, Jau-er
    [J]. JOURNAL OF ECONOMETRICS, 2018, 206 (02) : 472 - 514