Nonparametric inference on jump regression surface

被引:4
|
作者
Jose, CT [1 ]
Ismail, B
机构
[1] Cent Plantat Crops Res Inst, Reg Stn, Vittal 574243, Karnataka, India
[2] Mangalore Univ, Dept Stat, Mangalore 574199, India
关键词
change point; discontinuity; kernel estimator; local polynomial regression; nonparametric regression;
D O I
10.1080/10485250108832878
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Estimators for jump location curve and jump size function of a two dimensional jump regression function (jump regression surface) are proposed. The estimators are obtained by fitting kernel weighted least squares regression based on the observations in the four quadrants of a neighborhood of a given point. The proposed procedure can be used in the case of jump in the regression surface and/or in its slope (jump in the partial derivatives). The limiting distributions and the asymptotic properties of the estimators are investigated. The procedure is illustrated through a simulation study.
引用
收藏
页码:791 / 813
页数:23
相关论文
共 50 条
  • [1] ERROR INFERENCE FOR NONPARAMETRIC REGRESSION
    RUTHERFORD, B
    YAKOWITZ, S
    [J]. ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 1991, 43 (01) : 115 - 129
  • [2] ON NONPARAMETRIC INFERENCE IN THE REGRESSION DISCONTINUITY DESIGN
    Kamat, Vishal
    [J]. ECONOMETRIC THEORY, 2018, 34 (03) : 694 - 703
  • [3] Statistical inference for nonparametric censored regression
    Mao, Guangcai
    Zhang, Jing
    [J]. STAT, 2021, 10 (01):
  • [4] Parameterization and inference for nonparametric regression problems
    Jiang, WX
    Kipnis, V
    Midthune, D
    Carroll, RJ
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2001, 63 : 583 - 591
  • [5] Variance estimation in nonparametric regression with jump discontinuities
    Dai, Wenlin
    Tong, Tiejun
    [J]. JOURNAL OF APPLIED STATISTICS, 2014, 41 (03) : 530 - 545
  • [6] Statistical inference on uncertain nonparametric regression model
    Ding, Jianhua
    Zhang, Zhiqiang
    [J]. FUZZY OPTIMIZATION AND DECISION MAKING, 2021, 20 (04) : 451 - 469
  • [7] AN ANALYSIS OF BAYESIAN-INFERENCE FOR NONPARAMETRIC REGRESSION
    COX, DD
    [J]. ANNALS OF STATISTICS, 1993, 21 (02): : 903 - 923
  • [8] Nonparametric inference on smoothed quantile regression process
    Hao, Meiling
    Lin, Yuanyuan
    Shen, Guohao
    Su, Wen
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2023, 179
  • [9] Regression-type inference in nonparametric autoregression
    Neumann, MH
    Kreiss, JP
    [J]. ANNALS OF STATISTICS, 1998, 26 (04): : 1570 - 1613
  • [10] Statistical inference on uncertain nonparametric regression model
    Jianhua Ding
    Zhiqiang Zhang
    [J]. Fuzzy Optimization and Decision Making, 2021, 20 : 451 - 469