Nonparametric regression with multiple thresholds: Estimation and inference

被引:7
|
作者
Chiou, Yan-Yu [1 ]
Chen, Mei-Yuan [2 ]
Chen, Jau-er [3 ,4 ]
机构
[1] Acad Sinica, Inst Econ, Taipei, Taiwan
[2] Natl Chung Hsing Univ, Dept Finance, 250 Kuo Kuang Rd, Taichung 402, Taiwan
[3] Natl Taiwan Univ, Dept Econ, 1,Sec 4,Roosevelt Rd, Taipei 10617, Taiwan
[4] Natl Taiwan Univ, CRETA, Taipei, Taiwan
关键词
Nonparametric regression; Threshold variable; Threshold value; Significance test; ABSOLUTELY REGULAR PROCESSES; CENTRAL-LIMIT-THEOREM; STRUCTURAL-CHANGES; TIME-SERIES; MODELS; TESTS;
D O I
10.1016/j.jeconom.2018.06.011
中图分类号
F [经济];
学科分类号
02 ;
摘要
This paper examines nonparametric regression with an exogenous threshold variable, allowing for an unknown number of thresholds. Given the number of thresholds and corresponding threshold values, we first establish the asymptotic properties of the local constant estimator for a nonparametric regression with multiple thresholds. However, the number of thresholds and corresponding threshold values are typically unknown in practice. We then use our testing procedure to determine the unknown number of thresholds and derive the limiting distribution of the proposed test. The Monte Carlo simulation results indicate the adequacy of the modified test and accuracy of the sequential estimation of the threshold values. We apply our testing procedure to an empirical study of the 401(k) retirement savings plan with income thresholds. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:472 / 514
页数:43
相关论文
共 50 条
  • [1] Variance estimation in nonparametric multiple regression
    Kulasekera, KB
    Gallagher, C
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2002, 31 (08) : 1373 - 1383
  • [2] Estimation and inference for error variance in bivariate nonparametric regression
    Bock, M.
    Bowman, A. W.
    Ismail, B.
    [J]. STATISTICS AND COMPUTING, 2007, 17 (01) : 39 - 47
  • [3] Estimation and inference for error variance in bivariate nonparametric regression
    M. Bock
    A. W. Bowman
    B. Ismail
    [J]. Statistics and Computing, 2007, 17 : 39 - 47
  • [4] Nonparametric multiple regression estimation for circular response
    Andrea Meilán-Vila
    Mario Francisco-Fernández
    Rosa M. Crujeiras
    Agnese Panzera
    [J]. TEST, 2021, 30 : 650 - 672
  • [5] Nonparametric multiple regression estimation for circular response
    Meilan-Vila, Andrea
    Francisco-Fernandez, Mario
    Crujeiras, Rosa M.
    Panzera, Agnese
    [J]. TEST, 2021, 30 (03) : 650 - 672
  • [6] ERROR INFERENCE FOR NONPARAMETRIC REGRESSION
    RUTHERFORD, B
    YAKOWITZ, S
    [J]. ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 1991, 43 (01) : 115 - 129
  • [7] NONPARAMETRIC SEQUENTIAL ESTIMATION OF A MULTIPLE-REGRESSION FUNCTION
    AHMAD, IA
    LIN, PE
    [J]. BULLETIN OF MATHEMATICAL STATISTICS, 1976, 17 (1-2): : 63 - 75
  • [8] Nonparametric predictive inference for diagnostic test thresholds
    Coolen-Maturi, Tahani
    Coolen, Frank P. A.
    Alabdulhadi, Manal
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2020, 49 (03) : 697 - 725
  • [9] Nonparametric inference on jump regression surface
    Jose, CT
    Ismail, B
    [J]. JOURNAL OF NONPARAMETRIC STATISTICS, 2001, 13 (06) : 791 - 813
  • [10] ON NONPARAMETRIC INFERENCE IN THE REGRESSION DISCONTINUITY DESIGN
    Kamat, Vishal
    [J]. ECONOMETRIC THEORY, 2018, 34 (03) : 694 - 703