Parameterization and inference for nonparametric regression problems

被引:4
|
作者
Jiang, WX [1 ]
Kipnis, V
Midthune, D
Carroll, RJ
机构
[1] Northwestern Univ, Dept Stat, Evanston, IL 60208 USA
[2] NCI, Bethesda, MD 20892 USA
[3] Texas A&M Univ, College Stn, TX USA
关键词
asymptotic variance; attenuation; bias; biomarkers; breast cancer; correlation; generalized estimating equations; goodness-of-fit test; local estimating equations; measurement error; nonparametric regression; reparameterization; validation study; varying-coefficient models;
D O I
10.1111/1467-9868.00300
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider local likelihood or local estimating equations, in which a multivariate function Theta(.) is estimated but a derived function lambda(.) of Theta(.) is of interest. In many applications, when most naturally formulated the derived function is a non-linear function of Theta(.). In trying to understand whether the derived non-linear function is constant or linear, a problem arises with this approach: when the function is actually constant or linear, the expectation of the function estimate need not be constant or linear, at least to second order. In such circumstances, the simplest standard methods in nonparametric regression for testing whether a function is constant or linear cannot be applied. We develop a simple general solution which is applicable to nonparametric regression, varying-coefficient models, nonparametric generalized linear models, etc. We show that, in local linear kernel regression, inference about the derived function lambda(.) is facilitated without a loss of power by reparameterization so that lambda(.) is itself a component of Theta(.). Our approach is in contrast with the standard practice of choosing Theta(.) for convenience and allowing lambda(.) to be a non-linear function of Theta(.). The methods are applied to an important data set in nutritional epidemiology.
引用
收藏
页码:583 / 591
页数:9
相关论文
共 50 条
  • [41] A fuzzy numeric inference strategy for classification and regression problems
    Crockett, K.
    Bandar, Z.
    O'Shea, J.
    Fowdar, J.
    [J]. INTERNATIONAL JOURNAL OF KNOWLEDGE-BASED AND INTELLIGENT ENGINEERING SYSTEMS, 2008, 12 (04) : 255 - 269
  • [42] NONPARAMETRIC REGRESSION
    HUSSAIN, SS
    SPRENT, P
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES A-STATISTICS IN SOCIETY, 1983, 146 : 182 - 191
  • [43] Nonparametric inference in astrophysics
    Jang, W
    Miller, C
    Connolly, A
    Schneider, J
    Genovese, C
    Nichol, B
    Moore, A
    Wasserman, L
    [J]. STATISTICAL CHALLENGES IN ASTRONOMY, 2003, : 221 - 241
  • [44] Nonparametric Statistical Inference
    Shalabh
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES A-STATISTICS IN SOCIETY, 2011, 174 : 508 - 509
  • [45] ASPECTS OF NONPARAMETRIC INFERENCE
    PURI, ML
    [J]. INTERNATIONAL STATISTICAL REVIEW, 1972, 40 (03) : 299 - 327
  • [46] Robust Nonparametric Inference
    Nordhausen, Klaus
    Oja, Hannu
    [J]. ANNUAL REVIEW OF STATISTICS AND ITS APPLICATION, VOL 5, 2018, 5 : 473 - 500
  • [47] ORACLE-EFFICIENT GLOBAL INFERENCE FOR VARIANCE FUNCTION IN NONPARAMETRIC REGRESSION WITH MISSING COVARIATES
    Cai, Li
    Wang, Suojin
    [J]. STATISTICA SINICA, 2023, 33 (01) : 281 - 302
  • [48] Inference on finite population categorical response: nonparametric regression-based predictive approach
    Adhya, Sumanta
    Banerjee, Tathagata
    Chattopadhyay, Gaurangadeb
    [J]. ASTA-ADVANCES IN STATISTICAL ANALYSIS, 2012, 96 (01) : 69 - 98
  • [49] Empirical likelihood inference for censored median regression model via nonparametric kernel estimation
    Zhao, Yichuan
    Chen, Feiming
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2008, 99 (02) : 215 - 231
  • [50] Using difference-based methods for inference in nonparametric regression with time series errors
    Hall, P
    Van Keilegom, I
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2003, 65 : 443 - 456