Synchronization of fractional-order and integer-order chaotic (hyper-chaotic) systems with different dimensions

被引:5
|
作者
Yang, Xiaoyan [1 ]
Liu, Heng [2 ]
Li, Shenggang [1 ]
机构
[1] Shaanxi Normal Univ, Coll Math & Informat Sci, Xian 710119, Shaanxi, Peoples R China
[2] Huainan Normal Univ, Dept Appl Math, Huainan 232038, Peoples R China
基金
中国国家自然科学基金;
关键词
W - Lambda(t) synchronization; fractional-order system; scaling matrix; chaotic (hyper-chaotic) system; FUNCTION PROJECTIVE SYNCHRONIZATION;
D O I
10.1186/s13662-017-1399-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
By constructing two scaling matrices, i.e., a function matrix Lambda(t) and a constant matrix W which is not equal to the identity matrix, a kind of W - Lambda(t) synchronization between fractional-order and integer-order chaotic (hyper-chaotic) systems with different dimensions is investigated in this paper. Based on the fractional-order Lyapunov direct method, a controller is designed to drive the synchronization error convergence to zero asymptotically. Finally, four numerical examples are presented to illustrate the effectiveness of the proposed method.
引用
收藏
页数:16
相关论文
共 50 条
  • [41] Complex compound-combination multi switching anti-synchronization of fractional-order complex chaotic systems and integer-order complex chaotic systems
    Zhang, Xiaoqing
    Xiao, Jian
    [J]. INTERNATIONAL JOURNAL OF DYNAMICS AND CONTROL, 2022, 10 (02) : 525 - 542
  • [42] Generalized projective synchronization for fractional-order chaotic systems with different fractional order
    Zhou, Ping
    Ding, Rui
    [J]. ADVANCED MATERIALS AND COMPUTER SCIENCE, PTS 1-3, 2011, 474-476 : 2106 - +
  • [43] Projective Synchronization in Coupled Integral and Fractional Order Hyper-chaotic Lorenz Systems
    Xing Lifen
    Shang Gang
    Liu Jie
    Li Xinjie
    Dong Pengzhen
    [J]. PROCEEDINGS OF THE 2009 INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND NATURAL COMPUTING, VOL II, 2009, : 194 - 197
  • [44] A fractional-order hyper-chaotic system and its circuit implementation
    Xue, Wei
    Xiao, Hui
    Xu, Jinkang
    Jia, Hongyan
    [J]. PROCEEDINGS OF INTERNATIONAL CONFERENCE ON ARTIFICIAL LIFE AND ROBOTICS (ICAROB2015), 2015, : 187 - 190
  • [45] A fractional-order hyper-chaotic economic system with transient chaos
    Yousefpour, Amin
    Jahanshahi, Hadi
    Munoz-Pacheco, Jesus M.
    Bekiros, Stelios
    Wei, Zhouchao
    [J]. CHAOS SOLITONS & FRACTALS, 2020, 130
  • [46] Fractional-Order Sliding Mode Synchronization for Fractional-Order Chaotic Systems
    Wang, Chenhui
    [J]. ADVANCES IN MATHEMATICAL PHYSICS, 2018, 2018
  • [47] Synchronization for the integer-order and fractional-order chaotic maps based on parameter estimation with JAYA-IPSO algorithm
    Yuexi Peng
    Kehui Sun
    Shaobo He
    [J]. The European Physical Journal Plus, 135
  • [48] Generalized Synchronization Between Different Fractional-Order Chaotic Systems
    Zhou Ping
    Cheng Xue-Feng
    Zhang Nian-Ying
    [J]. COMMUNICATIONS IN THEORETICAL PHYSICS, 2008, 50 (04) : 931 - 934
  • [49] Synchronization between two different fractional-order chaotic systems
    Xu, Chen
    Wu, Geng
    Feng, Jian-Wen
    Zhang, Wei-Qiang
    [J]. INTERNATIONAL JOURNAL OF NONLINEAR SCIENCES AND NUMERICAL SIMULATION, 2008, 9 (01) : 89 - 95
  • [50] Synchronization for the integer-order and fractional-order chaotic maps based on parameter estimation with JAYA-IPSO algorithm
    Peng, Yuexi
    Sun, Kehui
    He, Shaobo
    [J]. EUROPEAN PHYSICAL JOURNAL PLUS, 2020, 135 (03):